Computational Structures in Data
Science

Lecture #3:
UC Berkeley EECS =
Adj. Ass. Prof. Recu rsion

Jr. Gerald Friedland

Go watch Inception!
(Movie about recursion)

RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

September 9, 2016 http://inst.eecs.berkeley.edu/~cs88

CS88 news

 Homework will have “Challenge problems”

* Project 1 coming soon!
Site to know: www.stackoverflow.com

« Enroliment up to about 50. We might open a 3"
section.

UCB CS88 Fa16 L3

Computational Concepts today

» Variable Scope (also: see reading)
* Recursion

UCB CS88 Fa16 L3

Remember: Functions

def <function name> (<argument list>)

Lo

return expression

def concat(strl, str2):
return strl+str2;

concat(llHellOll ’ ’,W0rld’,)

Generalizes an expression or set of statements
to apply to lots of instances of the problem

* A function should do one thing well

UCB CS88 Fa16 L3

Variable Scope

When an input is passed to a function, what
does the function actually get?

— Internal variables get a copy of input values, with the
exception of mutable objects

Local variables only exist within the
function in which they are defined
— The variables cease to exist when the function ends

— The scope of a variable is the part(s) of code where that
variable name binding is valid (i.e. where it exists)

UCB CS88 Fa16 L3

Variable Scope (Python)

09/09/16 UCB CS88 Fa16 L3 6

Variable Scope: Example |

i=1
def foo():
i=25
print(i, 'in foo()')

print (i, ’'=global’)

foo()

Output?

1=global
5 in foo()

UCB CS88 Fa16 L3

Variable Scope: Example |l

a var = 'global value'

def a func():
global a var
a var = 'local value'
print(a var, '[a var inside
a func() 1)

print(a_var, '[a_var outside a_func()]')

a_func()
print(a var, '[a_var outside a func()]')

Output?
global value [a_var outside a_func()]

local value [a_var inside a_func()]
local value [a_var outside a_func()]

UCB CS88 Fa16 L3

Recursion

re-cur-sion
Iri'’kerZHan/ 4

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

re-cur-sive
[ri' karsiv/ €

adjective

characterized by recurrence or repetition, in particular.

o MATHEMATICS LINGUISTICS

relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

o COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

Recursive function calls itself, directly or indirectly

UCB CS88 Fa16 L3

Reminder: lteration

<initialization statements>

for <variables> 1in <sequence expression>:
<body statements>

<rest of the program>

<initialization statements>

while <predicate expression>:
<body statements>

<rest of the program>

[<expr with loop var> for <loop var> in <sequence expr >]

UCB CS88 Fa16 L3

Iteration vs Recursion

For loop:
def sum(n) :
s=0
for 1 1n range(0,n+l):
s=s+1
return s

UCB CS88 Fa16 L3

Iteration vs Recursion

While loop:
def sum(n) :
s=0
1=0
while 1<n:
1=1i+1
sS=s+1
return s

UCB CS88 Fa16 L3

Iteration vs Recursion

Recursion:
def sum(n) :
1f n==0:
return 0O
return n+sum(n-1)

UCB CS88 Fa16 L3

Recursion: Pattern

1. Test for simple “base” case 2. Solution in simple “base” case
def sum(n):
if n == 0:
return

return n + sum(n-1)

AN

4. Transform sol'n of
simpler problem into full
sol'n

3. Assume recursive
solution to simpler problem

 Linear recursion

UCB CS88 Fa16 L3

Why does it work?

sum(3)

sum(3) => 3 + sum(2)

=> 3 + sum(2) + sum(1l)

=> 3 + sum(2) + sum(l) + sum(O0)
=> 3 + sum(2) + sum(l) + O

=> 3 + sum(2) + 1

=> 3 + 3

=> 6

UCB CS88 Fa16 L3

How does it work?

« Each recursive call gets its own local variables
— Just like any other function call

« Computes its result (possibly using additional
calls)
— Just like any other function call

« Returns its result and returns control to its caller
— Just like any other function call

* The function that is called happens to be itself

— Called on a simpler problem
— Eventually bottoms out on the simple base case

 Reason about correctness “by mathematical
induction”
— Solve a base case
— Assuming a solution to a smaller problem, extend it
UCB CS88 Fa16 L3

Local variables

def sum(n) :
1f n==0:
return 0
return |ntsum(n-1)

Each call has its own “frame” of local variables

UCB CS88 Fa16 L3

Sanity Check...

e Recursion is B lteration
(i.e., loops)

a) more powerful than

b) just as powerful as
c) less powerful than

UCB CS88 Fa16 L3

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET OUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

S

Why Recursion?

« “After Abstraction, Recursion is probably
the 24 biggest idea in this course”

* “It’s tremendously useful when the problem
Is self-similar”

* “It’s no more powerful than iteration, but
often leads to more concise & better code”

e “I’s more ‘mathematical’”

* “It embodies the beauty and joy of
computing”

UCB CS88 Fa16 L3

Why Recursion? More Reason

* Recursive structures exist (sometimes
hidden) in nature and therefore in data!

* It’s mentally and sometimes
computationally more efficient to process
recursive structures using recursion.

UCB CS88 Fa16 L3

Recursion (unwanted)

- D
U
.i!{_

UCB CS88 Fa16 L3

Example |

List all items on your hard disk

=- L gravelleconsulting

. n
EJ L_ scripts Flles
B dijit

5 doj * Folders contain

= dojox —Files
E] = wndgets

B css — Folders
L e =] StockInfo.css
== images /\

f ~~~~~ 47 crude_oil_179x98.png
------ _f gasoline_179x938.png
------ _f gold_179x98.png
L e _T natural_gas_179x98.png
= templates
| ~[Z] stockinfa.html
2] stockwidget.html

Recursion!

UCB CS88 Fa16 L3

List Files in Python

def listfiles(directory):
content = [os.path.join(directory, x) for x in os.listdir(directory)]

dirs = sorted([x for x in content if os.path.isdir(x)])
files = sorted([x for x in content if os.path.isfile(x)])

for d in dirs:
print d
listfiles(d)

for £ in files:
print £

Iterative version about twice as much code
and much harder to think about.

UCB CS88 Fa16 L3

Example Il

Sort the numbers in a list.

a<bhb<e a<ec<h b<e<a c<b<a

Hidden recursive structure: Decision tree!

UCB CS88 Fa16 L3

Tree Recursion makes Sorting Efficient

Break the problem into multiple smaller sub-
problems, and solve them recursively

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)
lessor, more = split(pivot, rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,171])
(1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Fa16 L3

QuickSort Example

(3)1, 3, 2, 1) (4,5, 4, 17
@1)3, 2, 11 |1) @5, 17)
(1) 3,) 2] (1101 (1 | (17

il (211 [4] (1] 0

[1] [1][] [5, 17]

[2, 3] [4, 4, 5, 17]

[1I ll 2’ 3’ 3’ 3’ 4’ 4’ 5’ 17]

UCB CS88 Fa16 L3

Questions?

There is a little green house

And inside the little green house
There is a little brown house
And inside the little brown house
There is a little yellow house
And inside the little yellow house
There is a little white house

And inside the little white house
There is a little red heart

Warm and loving.

N
S
Fa
Fa

A& KING IS A SON OF A KING

Mother Goose Rhyme
Myself

As I walked by myself
And talked to myself,
Myself said unto me:
"Look to thyself,
for nobody cares for thee.”
I answered myself
And said to myself
In the selfsame repartee:
“Look to thyself,
Or not look to thyself,
The selfsame thing will be.”

IF ALL WERE ONE

1f all the scas were one sea,

\Vhat a great sea that would be!

And if all the trees were one tree,

Vhat a great tree that would be!

And if all the axes were one axe,

What 3 grear axe that would be!

And if all the men were one man,

\Vhat a great man he would be!

And if the great man took the great axe,
And cut down the great tree, :

“And let it fall into the great sca,

What a splish splash that would be!

11

555585
b - - - 3
333
=22
b &
=22
333

15

[Family Tres of Rabbits]

S—
3

o

it

T

(€) 2001, Task & Graphic Design: Dalit Levy. Technion - Israel Institute of Technology

Contact: levy.dalit@gmail.com

UCB CS88 Fa16 L3

