
1 

 
Computational Structures in Data 

Science 

 

Lecture #3:  
Recursion 

UC Berkeley EECS 
Adj. Ass. Prof. 

Dr. Gerald Friedland 

http://inst.eecs.berkeley.edu/~cs88 September 9, 2016 

Go watch Inception! 
(Movie about recursion) 

CS88 news 

09/09/16 UCB CS88 Fa16 L3 2 

•  Homework will have “Challenge problems” 
 
 

•  Project 1 coming soon! 
Site to know: www.stackoverflow.com 

•  Enrollment up to about 50. We might open a 3rd 
section. 

Computational Concepts today 

•  Variable Scope (also: see reading) 
• Recursion 
 
 

09/02/16 UCB CS88 Fa16 L3 3 

Remember: Functions 

•  Generalizes an expression or set of statements 
to apply to lots of instances of the problem 

•  A function should do one thing well 

expression 

def <function name> (<argument list>) : 

return

09/09/16 UCB CS88 Fa16 L3 4 

def concat(str1, str2):
   return str1+str2;

concat(“Hello”,”World”)

Variable Scope 
When an input is passed to a function, what 

does the function actually get? 
–  Internal variables get a copy of input values, with the 

exception of mutable objects 

 
Local variables only exist within the 

function in which they are defined 
–  The variables cease to exist when the function ends 
–  The scope of a variable is the part(s) of code where that 

variable name binding is valid (i.e. where it exists) 

9/9/16 UCB CS88 Fa16 L3 5 

Variable Scope (Python) 

09/09/16 UCB CS88 Fa16 L3 6 



2 

Variable Scope: Example I 

09/09/16 UCB CS88 Fa16 L3 7 

i = 1

def foo():
    i = 5
    print(i, 'in foo()')

print(i, ’=global')

foo()

Output? 
1=global 
5 in foo() 

Variable Scope: Example II 

9/9/16 UCB CS88 Fa16 L3 8 

a_var = 'global value'

def a_func():
    global a_var
    a_var = 'local value'
    print(a_var, '[ a_var inside 
a_func() ]')

print(a_var, '[ a_var outside a_func() ]')
a_func()
print(a_var, '[ a_var outside a_func() ]')

global value [ a_var outside a_func() ] 
local value [ a_var inside a_func() ] 
local value [ a_var outside a_func() ] 

Output? 

Recursion 

Recursive function calls itself, directly or indirectly 
9/9/16 UCB CS88 Fa16 L3 9 

Reminder: Iteration 

9/9/16 UCB CS88 Fa16 L3 10 

<initialization statements> 

for <variables> in <sequence expression>: 
  <body statements> 
 
<rest of the program> 

<initialization statements> 

while <predicate expression>: 
   <body statements> 
 
<rest of the program> 

[ <expr with loop var> for <loop var> in <sequence expr > ] 

Iteration vs Recursion 

9/9/16 UCB CS88 Fa16 L3 11 

def sum(n): 
 s=0 
 for i in range(0,n+1): 
  s=s+i 
 return s  

For loop: 

Iteration vs Recursion 

9/9/16 UCB CS88 Fa16 L3 12 

def sum(n): 
 s=0 
 i=0 
 while i<n: 
  i=i+1 
  s=s+i 
 return s  

While loop: 



3 

Iteration vs Recursion 

9/9/16 UCB CS88 Fa16 L3 13 

def sum(n): 
 if n==0: 
   return 0 
 return n+sum(n-1) 
  

Recursion: 

Recursion: Pattern 

•  Linear recursion 

def sum(n):
    if n == 0:
        return 0
    return n + sum(n-1)
    

1. Test for simple “base” case 2. Solution in simple “base” case 

3. Assume recursive 
solution to simpler problem 

4. Transform sol’n of 
simpler problem into full 
sol’n 

9/9/16 UCB CS88 Fa16 L3 14 

Why does it work? 

sum(3)

# sum(3) => 3 + sum(2)
#              => 3 + sum(2) + sum(1)
#              => 3 + sum(2) + sum(1) + sum(0)
#              => 3 + sum(2) + sum(1) + 0
#    => 3 + sum(2) + 1
#    => 3 + 3
#    => 6  

9/9/16 UCB CS88 Fa16 L3 15 

How does it work? 
•  Each recursive call gets its own local variables 

–  Just like any other function call 

•  Computes its result (possibly using additional 
calls) 

–  Just like any other function call 

•  Returns its result and returns control to its caller 
–  Just like any other function call 

•  The function that is called happens to be itself 
–  Called on a simpler problem 
–  Eventually bottoms out on the simple base case 

•  Reason about correctness “by mathematical 
induction” 

–  Solve a base case 
–  Assuming a solution to a smaller problem, extend it 

9/9/16 UCB CS88 Fa16 L3 16 

Local variables 

Each call has its own “frame” of local variables 

def sum(n): 
 if n==0: 
   return 0 
 return n+sum(n-1) 

9/9/16 UCB CS88 Fa16 L3 17 

•  Recursion is ! Iteration 
(i.e., loops) 

a)  more powerful than 
b)   just as powerful as 
c)  less powerful than 

Sanity Check… 

9/9/16 UCB CS88 Fa16 L3 18 



4 

•  “After Abstraction, Recursion is probably 
the 2nd biggest idea in this course” 

•  “It’s tremendously useful when the problem 
is self-similar” 

•  “It’s no more powerful than iteration, but 
often leads to more concise & better code” 

•  “It’s more ‘mathematical’” 
•  “It embodies the beauty and joy of 

computing” 
•  … 

Why Recursion? 

9/9/16 UCB CS88 Fa16 L3 19 

•  Recursive structures exist (sometimes 
hidden) in nature and therefore in data! 

•  It’s mentally and sometimes 
computationally more efficient to process 
recursive structures using recursion.  

Why Recursion? More Reason 

9/9/16 UCB CS88 Fa16 L3 20 

Recursion (unwanted) 

9/9/16 UCB CS88 Fa16 L3 21 

Example I 

9/9/16 UCB CS88 Fa16 L3 22 

List all items on your hard disk 

•  Files 
•  Folders contain 

– Files 
– Folders 

Recursion! 

List Files in Python 

9/9/16 UCB CS88 Fa16 L3 23 

def listfiles(directory):
    content = [os.path.join(directory, x) for x in os.listdir(directory)]
 
    dirs = sorted([x for x in content if os.path.isdir(x)])
    files = sorted([x for x in content if os.path.isfile(x)])

    for d in dirs:
print d
listfiles(d)

    for f in files:
print f

Iterative version about twice as much code 
and much harder to think about. 

Example II 

9/9/16 UCB CS88 Fa16 L3 24 

Sort the numbers in a list.  
   

 
 
 
 
 
 
 
Hidden recursive structure: Decision tree! 



5 

Tree Recursion makes Sorting Efficient 
Break the problem into multiple smaller sub-
problems, and solve them recursively 

def split(x, s):
    return [i for i in s if i <= x], [i for i in s if i > x]

def qsort(s):
    """Sort a sequence - split it by the first element,
    sort both parts and put them back together."””
    if not s:
        return []
    else:
        pivot = first(s)
        lessor, more = split(pivot, rest(s))
        return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

9/9/16 UCB CS88 Fa16 L3 25 

QuickSort Example 

[3, 3, 1, 4, 5, 4, 3, 2, 1, 17]

[3, 1, 3, 2, 1] [4, 5, 4, 17]

[1, 3, 2, 1] []

[1] [3, 2]

[] []

[1]

[2] []

[] []

[2, 3]

[1, 1, 2, 3]

[1, 1, 2, 3, 3]

[4] [5, 17]

[] []

[4]

[] [17]

[] []

[5, 17]

[4, 4, 5, 17]

[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

9/9/16 UCB CS88 Fa16 L3 26 

Questions? 

9/9/16 UCB CS88 Fa16 L3 27 


