Computational Structures in Data
Science

e Lecture #3:

UC Berkeley EECS

Ad] Ass. Prot. Recursion

Dr. Gerald Friedland

Go watch Inception!
(Movie about recursion)

September 9, 2016 http://inst.eecs.berkeley.edu/~cs88

CS88 news

* Homework will have “Challenge problems”

* Project 1 coming soon!
Site to know: www.stackoverflow.com

« Enrollment up to about 50. We might open a 3"
section.

09/09/16 UCB CS88 Fal6 L3 2

Computational Concepts today

+ Variable Scope (also: see reading)
* Recursion

UCB Cs88 Fa16 L3 3

Remember: Functions

def <function name> (<argument list>) :

L

return expression

def concat(strl, str2):
return strl+str2;

concat (“Hello”,"World”)

« Generalizes an expression or set of statements
to apply to lots of instances of the problem

« A function should do one thing well

09/09/16 UCB CS88 Fal6 L3 4

Variable Scope

When an input is passed to a function, what
does the function actually get?

— Internal variables get a copy of input values, with the
exception of mutable objects

Local variables only exist within the
function in which they are defined
— The variables cease to exist when the function ends

— The scope of a variable is the part(s) of code where that
variable name binding is valid (i.e. where it exists)

9916 UCB CS88 Fa16 L3

Variable Scope (Python)

Built-in

T——a Global
t_‘ Enclosed

T - Local

09/09/16 UCB CS88 Fal6 L3

Variable Scope: Example |

i=1
def foo():

i=-5

print(i, 'in foo()"')
print(i, ’'=global')

foo()

Output?

1=global
5 in foo()

09/09/16 UCB CS88 Fa16 L3

Recursion

re-cur-sion
Iri'karZHan/ ©

noun W ics

the repeated application of a recursive procedure or definition.
. a recursive definition.
plural noun: recursions

Iri'kersiv/ 4)
adjective
characterized by recurrence or repetition, in particular.
. MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.
COMPUTING
relating to or involving a program or routine of which a part requires the application

of the whole, so that its explicit interpretation requires in general many successive
executions.

Recursive function calls itself, directly or indirectly

91916 UCB Cs88 Fa16 L3 9

Iteration vs Recursion

For loop:
def sum(n) :
s=0
for i in range(0,n+l):
s=s+i
return s
9/9/16 UCB CS88 Fa16 L3 11

Variable Scope: Example Il

a_var = 'global value'

def a_func():
global a_var
a_var = 'local value'
print(a_var, '[a_var inside
a_func() 1')

print(a_var, '[a_var outside a_func()]')
a_func()
print(a_var, '[a_var outside a_func()]')

Output?
global value [a_var outside a_func()]

local value [a_var inside a_func() |
local value [a_var outside a_func()]

9/9/16 UCB CS88 Fal6 L3

9/9/16

Reminder: Iteration

<initialization statements>

for <variables> in <sequence expression>:
<body statements>

<rest of the program>

<initialization statements>
while <predicate expression>:
<body statements>

<rest of the program>

[<expr with loop var> for <loop var> in <sequence expr >]

UCB CS88 Fa16 L3 10

91916

Iteration vs Recursion

While loop:
def sum(n) :

s=0

i=0

while i<n:
i=i+1
s=s+1i

return s

UCB CS88 Fa16 L3 12

Iteration vs Recursion

Recursion:
def sum(n) :
if n==0:
return O
return n+sum(n-1)

9/9/16 UCB CS88 Fa16 L3

Recursion: Pattern

1. Test for simple “base” case 2. Solution in simple “base” case ‘

def s}}ﬂ(n):
if n == 0:
return
return n + sum(n-1)

3. Assume recursive

simpler problem into full solution to simpler problem

4. Transform sol'n of
sol'n

* Linear recursion

9/9/16 UCB CS88 Fal6 L3

Why does it work?

sum(3)
sum(3) => 3 + sum(2)
=> 3 + sum(2) + sum(1l)
=> 3 + sum(2) + sum(l) + sum(0)
=> 3 + sum(2) + sum(l) + O
=> 3 + sum(2) + 1
=3 + 3
= 6
9/9116 UCB CS88 Fa16 L3

How does it work?

Each recursive call gets its own local variables
— Just like any other function call
Computes its result (possibly using additional
calls)
— Just like any other function call
Returns its result and returns control to its caller
— Just like any other function call
The function that is called happens to be itself
— Called on a simpler problem
— Eventually bottoms out on the simple base case

Reason about correctness “by mathematical
induction”

— Solve a base case

— Assuming a solution to a smaller problem, extend it
9/9116 UCB CS88 Fa16 L3

Local variables

def sum :

if n==0:
return 0
return msum (n-1)

Each call has its own “frame” of local variables

9916 UCB CS88 Fa16 L3

Sanity Check...

* Recursion is W Iteration
(i.e., loops)

YOUR PARTY ENTERS THE TRAVERN.

T GATHER EVERYONE AROUND |
A TABLE. I HAVE THE ELES |
START WHITTLING DICE AND |
GET OUT SOME PARCHIENT |
a) more powerful than FOR CHARACTER SHEETS.

b) just as powerful as | HEY. NO RECURSIG.

\]
c) less powerful than .

91916 UCB CS88 Fal6 L3

Why Recursion?

« “After Abstraction, Recursion is probably
the 2" biggest idea in this course”

“It’s tremendously useful when the problem
is self-similar”

“It's no more powerful than iteration, but
often leads to more concise & better code”

“It’s more ‘mathematical’”

“It embodies the beauty and joy of
computing”

9/9/16 UCB CS88 Fa16 L3 19

9/9/16

Why Recursion? More Reason

* Recursive structures exist (sometimes
hidden) in nature and therefore in data!

It’s mentally and sometimes
computationally more efficient to process
recursive structures using recursion.

UCB CS88 Fal6 L3

Recursion (unwanted)

91916 UCB Cs88 Fa16 L3 21

9/9/16

Example |

List all items on your hard disk

B-& ?ravs”ecnnsulting . Files
* Folders contain
i (= doijox —Files
== widgets
B css —Folders
-~ [B stockinfo.css
== images

47 crude_ol_179x98.png
ET gasoline_179x98.png
87 gold_179x98.png
“ 8 natural_gas_179x98.png
== templates
!) stockinfo.html
[2) stockwidget.html

UCB CS88 Fal6 L3

List Files in Python

def listfiles(directory):
content = [os.path.join(directory, x) for x in os.listdir(directory)]

dirs = sorted([x for x in content if os.path.isdir(x)])
files = sorted([x for x in content if os.path.isfile(x)])

for d in dirs:
print d
listfiles(d)

for £ in files:
print £

Iterative version about twice as much code
and much harder to think about.

9916 UCB Cs88 Fa16 L3 23

91916

Example I

Sort the numbers in a list.

e<a<b b<a<e

a<hb<e a<e<bh b<e<a e<b<a

Hidden recursive structure: Decision tree!

UCB CS88 Fal6 L3

Tree Recursion makes Sorting Efficient

Break the problem into multiple smaller sub-
problems, and solve them recursively

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)
lessor, more = split(pivot, rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
{1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

9/9/16 UCB CS88 Fa16 L3

25

9/9/16

QuickSort Example

\(3) 3, 1,4,5,4,3,2,1, 17]\

[(EPEVIENEVESY [ERU

[5,]

(1, 1, 2, 3, 3]

[(1, 1, 2,3, 3,3, 4, 4,5, 1711]

UCB CS88 Fal6 L3 26

Questions?

91916 UCB CS88 Fa16 L3

27

n

