Computational Structures in Data
Science

e Lecture #3:

UC Berkeley EECS

Ad] Ass. Prot. Recursion

Dr. Gerald Friedland

Go watch Inception!
(Movie about recursion)

September 9, 2016 http://inst.eecs.berkeley.edu/~cs88

CS88 news

* Homework will have “Challenge problems”

* Project 1 coming soon!
Site to know: www.stackoverflow.com

« Enrollment up to about 50. We might open a 3"
section.
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Computational Concepts today

+ Variable Scope (also: see reading)
* Recursion
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Remember: Functions

def <function name> (<argument list>) :

L

return expression

def concat(strl, str2):
return strl+str2;

concat (“Hello”,"World”)

« Generalizes an expression or set of statements
to apply to lots of instances of the problem

« A function should do one thing well
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Variable Scope

When an input is passed to a function, what
does the function actually get?

— Internal variables get a copy of input values, with the
exception of mutable objects

Local variables only exist within the
function in which they are defined
— The variables cease to exist when the function ends

— The scope of a variable is the part(s) of code where that
variable name binding is valid (i.e. where it exists)
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Variable Scope (Python)

Built-in

T——a Global
t_‘ Enclosed

T - Local
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Variable Scope: Example |

i=1
def foo():

i=-5

print(i, 'in foo()"')
print(i, ’'=global')

foo()

Output?

1=global
5 in foo()
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Recursion

re-cur-sion
Iri'karZHan/ ©

noun W ics

the repeated application of a recursive procedure or definition.
. a recursive definition.
plural noun: recursions

Iri'kersiv/ 4)
adjective
characterized by recurrence or repetition, in particular.
. MATHEMATICS  LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.
COMPUTING
relating to or involving a program or routine of which a part requires the application

of the whole, so that its explicit interpretation requires in general many successive
executions.

Recursive function calls itself, directly or indirectly
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Iteration vs Recursion

For loop:
def sum(n) :
s=0
for i in range(0,n+l):
s=s+i
return s
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Variable Scope: Example Il

a_var = 'global value'

def a_func():
global a_var
a_var = 'local value'
print(a_var, '[ a_var inside
a_func() 1')

print(a_var, '[ a_var outside a_func() ]')
a_func()
print(a_var, '[ a_var outside a_func() ]')

Output?
global value [ a_var outside a_func() ]

local value [ a_var inside a_func() |
local value [ a_var outside a_func() ]
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Reminder: Iteration

<initialization statements>

for <variables> in <sequence expression>:
<body statements>

<rest of the program>

<initialization statements>
while <predicate expression>:
<body statements>

<rest of the program>

[ <expr with loop var> for <loop var> in <sequence expr > ]
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Iteration vs Recursion

While loop:
def sum(n) :

s=0

i=0

while i<n:
i=i+1
s=s+1i

return s
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Iteration vs Recursion

Recursion:
def sum(n) :
if n==0:
return O
return n+sum(n-1)
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Recursion: Pattern

1. Test for simple “base” case 2. Solution in simple “base” case ‘

def s}}ﬂ(n):
if n == 0:
return
return n + sum(n-1)

3. Assume recursive

simpler problem into full solution to simpler problem

4. Transform sol'n of
sol'n

* Linear recursion
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Why does it work?

sum(3)
# sum(3) => 3 + sum(2)
# => 3 + sum(2) + sum(1l)
# => 3 + sum(2) + sum(l) + sum(0)
# => 3 + sum(2) + sum(l) + O
# => 3 + sum(2) + 1
# =3 + 3
# = 6
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How does it work?

Each recursive call gets its own local variables
— Just like any other function call
Computes its result (possibly using additional
calls)
— Just like any other function call
Returns its result and returns control to its caller
— Just like any other function call
The function that is called happens to be itself
— Called on a simpler problem
— Eventually bottoms out on the simple base case

Reason about correctness “by mathematical
induction”

— Solve a base case

— Assuming a solution to a smaller problem, extend it
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Local variables

def sum :

if n==0:
return 0
return msum (n-1)

Each call has its own “frame” of local variables
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Sanity Check...

* Recursion is W Iteration
(i.e., loops)

YOUR PARTY ENTERS THE TRAVERN.

T GATHER EVERYONE AROUND |
A TABLE. I HAVE THE ELES |
START WHITTLING DICE AND |
GET OUT SOME PARCHIENT |
a) more powerful than FOR CHARACTER SHEETS.

b) just as powerful as | HEY. NO RECURSIG.

\ ]
c) less powerful than .
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Why Recursion?

« “After Abstraction, Recursion is probably
the 2" biggest idea in this course”

“It’s tremendously useful when the problem
is self-similar”

“It's no more powerful than iteration, but
often leads to more concise & better code”

“It’s more ‘mathematical’”

“It embodies the beauty and joy of
computing”
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Why Recursion? More Reason

* Recursive structures exist (sometimes
hidden) in nature and therefore in data!

It’s mentally and sometimes
computationally more efficient to process
recursive structures using recursion.
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Recursion (unwanted)
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Example |

List all items on your hard disk

B-& ?ravs”ecnnsulting . Files
* Folders contain
i (= doijox —Files
== widgets
B css —Folders
-~ [B stockinfo.css
== images

47 crude_ol_179x98.png
ET gasoline_179x98.png
87 gold_179x98.png
“ 8 natural_gas_179x98.png
== templates
! ) stockinfo.html
[2) stockwidget.html
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List Files in Python

def listfiles(directory):
content = [os.path.join(directory, x) for x in os.listdir(directory)]

dirs = sorted([x for x in content if os.path.isdir(x)])
files = sorted([x for x in content if os.path.isfile(x)])

for d in dirs:
print d
listfiles(d)

for £ in files:
print £

Iterative version about twice as much code
and much harder to think about.
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Example I

Sort the numbers in a list.

e<a<b b<a<e

a<hb<e a<e<bh b<e<a e<b<a

Hidden recursive structure: Decision tree!
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Tree Recursion makes Sorting Efficient

Break the problem into multiple smaller sub-
problems, and solve them recursively

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)
lessor, more = split(pivot, rest(s))
return gsort(lessor) + [pivot] + gsort(more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
{1, 1, 2, 3, 3, 3, 4, 4, 5, 17]
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QuickSort Example

\(3) 3, 1,4,5,4,3,2,1, 17]\

[(EPEVIENEVESY [ERU

[5, ]

(1, 1, 2, 3, 3]

[(1, 1, 2,3, 3,3, 4, 4,5, 1711]
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Questions?
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