

Computational Structures in Data

Science

Lecture #4:
Higher Order

Functions

UC Berkeley EECS
Adj. Ass. Prof.

Dr. Gerald Friedland

http://inst.eecs.berkeley.edu/~cs88 September 16, 2016

http://money.cnn.com/2016/09/13/news/wada-hacked-russian-spies/index.html?
iid=surge-story-summary

Hackers steal medical data of US Olympic stars

Administrative issues
•  Concurrent Enrollment: Assume you are in and

work on the class!

•  Data 8 is a requirement. You need to have taken
c8 or do it concurrently.

•  If you can’t get into data8, try CS10.

9/15/16 UCB CS88 FA16 L4 2

Computational Concepts today
•  More on Recursion
•  Runtime

•  Higher Order Functions
•  Functions as Values
•  Functions with functions as argument
•  Assignment of function values
•  Higher order function patterns

–  Map, Filter, Reduce

•  Function factories – create and return functions

9/15/16 UCB CS88 FA16 L4 3

More on Recursion

•  The sum of no numbers is zero
•  The sum of 12 through n2 is n2 plus the sum of 12

through (n-1)2

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return n**2 + sum_of_squares(n-1)

9/15/16 UCB CS88 FA16 L4 4

Recap: Tail Recursion
•  All the work happens on the way down the

recursion
•  On the way back up, just return

def sum_up_squares(i, n, accum):
 """Sum the squares from i to n in incr. order"""
 if i > n:
 return accum
 else:
 return sum_up_squares(i+1, n, accum + i**2)

>>> sum_up_squares(1,3,0)
14

Base Case

Tail Recursive Case

9/15/16 UCB CS88 FA16 L4 5

How much ???
•  Time is required to compute
sum_of_squares(n)?

–  Recursively?
–  Iteratively ?

•  Space is required to compute
sum_of_squares(n)?

–  Recursively?
–  Iteratively ?

•  Count the frames…
•  Recursive is linear, iterative is constant !
•  And what about the order of evaluation?

Linear
proportional to n
cn for some c

9/15/16 UCB CS88 FA16 L4 6

Recap: Defining Functions

•  Generalizes an expression or set of statements
to apply to lots of instances of the problem

•  A function should do one thing well

expression

def <function name> (<argument list>) :

return

9/15/16 UCB CS88 FA16 L4 7

Recap: Data or Code?

9/15/16 UCB CS88 FA16 L4 8

Higher Order Functions
•  Functions that operate on functions
•  A function

•  A function that takes a function arg

def odd(x):
 return (x%2==1)

>>> odd(3)
True

def filter(fun, s):
 return [x for x in s if fun(x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[1, 3, 5, 7]

Why is this
not ‘odd’ ?

9/15/16 UCB CS88 FA16 L4 9

Higher Order Functions (cont)
•  A function that returns (makes) a function

def leq_maker(c):
 def leq(val):
 return val <= c
 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]
>>>

9/15/16 UCB CS88 FA16 L4 10

One more example
•  What does this function do?

def split_fun(p, s):
 ””” Returns <you fill this in>."""
 return [i for i in s if p(i)], [i for i in s if not p(i)]

>>> split_fun(leq_maker(3), [0,1,2,3,4,5,6])
([0, 1, 2, 3], [4, 5, 6])

9/15/16 UCB CS88 FA16 L4 11

Three super important HOFS

map(function_to_apply, list_of_inputs)

filter(condition, list_of_inputs)

Applies function to each element of the list

Returns a list of elements for which the
condition is true

reduce(function, list_of_inputs)
Reduces the list to a result, given the function

9/15/16 UCB CS88 FA16 L4 12

Recursion with Higher Order Fun

•  Divide and conquer

def map(f, s):
 if not s:
 return []
 else:
 return [f(first(s))] + map(f, rest(s))

def square(x):
 return x**2

>>> map(square, [2,4,6])
[4, 16, 36]

Base Case

Recursive Case

9/15/16 UCB CS88 FA16 L4 13

Using HOF to preserve interface

•  What are the globals and locals in a call to
sum_upper?

–  Try python tutor

•  Lexical (static) nesting of function def within def - vs
•  Dynamic nesting of function call within call

def sum_of_squares(n):
 def sum_upper(i, accum):
 if i > n:
 return accum
 else:
 return sum_upper(i+1, accum + i*i)

 return sum_upper(1,0)

9/15/16 UCB CS88 FA16 L4 14

Recap: Quicksort
•  Break the problem into multiple smaller sub-

problems, and Solve them recursively

def split(x, s):
 return [i for i in s if i <= x], [i for i in s if i > x]

def qsort(s):
 """Sort a sequence - split it by the first element,
 sort both parts and put them back together."””
 if not s:
 return []
 else:
 pivot = first(s)
 lessor, more = split(pivot, rest(s))
 return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

9/15/16 UCB CS88 FA16 L4 15

Quicksort with HOF

def qsort(s):
 """Sort a sequence - split it by the first element,
 sort both parts and put them back together.""”

 if not s:
 return []
 else:
 pivot = first(s)
 lessor, more = split_fun(leq_maker(pivot), rest(s))
 return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

9/15/16 UCB CS88 FA16 L4 16

How much ???
•  Time is required to compute quicksort(s)?

•  Space is required?

•  Name of this recursion scheme?
–  Tree recursion

Logarithmic to len(s)
c*log(len(s)) for some c

9/15/16 UCB CS88 FA16 L4 17

Questions?

9/15/16 UCB CS88 FA16 L4 18

