
Mutability, Nonlocal, Exceptions
10/14/16



What is mutation?

● Mutation is the changing of values 
● Certain data types in Python are mutable

○ Lists
● Other data types in Python are immutable

○ Tuples
○ Strings

● Dictionary keys must be immutable
● Dictionary values can be mutable or immutable



Brief Intro to Mutability in HW 4

● Instead of returning a new list, we could have modified lst, which would be 
an example of mutation 



Examples of Immutable Data Types

>>> x = (1, 2, 3)

>>> x[0] = 10 # What will this do?

>>> d = {}

>>> key = [1, 2]

>>> value = [3, 4]

>>> d[key] = value # What about this?



Mutability is Tricky

● Mutability can often lead to unexpected behavior when writing programs
● http://tinyurl.com/zexl7he

● Both variables refer to the same list in the above example
● It’s easy to mistake x and y as being two different lists

http://tinyurl.com/zexl7he
http://tinyurl.com/zexl7he


Examples of Mutable Data Types

● List creation: http://tinyurl.com/j4jc5gg
● Appending to a list: http://tinyurl.com/jnteyar
● Nested lists: http://tinyurl.com/j57szgu

● These sorts of scenarios can often lead to buggy code
● Understanding the basics of mutability really helps in debugging your code

http://tinyurl.com/j4jc5gg
http://tinyurl.com/jnteyar
http://tinyurl.com/j57szgu
http://tinyurl.com/j57szgu


Is vs. == 

● == only compares values, “is” compares whether two variables 

actually point to the same list

>>> x = [1, 2, 3, 4] >>> y1 == x

>>> y1 = x True

>>> y2 = list(x) >>> y2 == x

>>> y1 is x True

True

>>> y2 is x

False



Administrivia

● We’re almost done grading midterms.
● Mid-semester survey to come out soon. We would really appreciate 

everyone’s feedback!
● Prof. Friedland will not be having office hours this and next week. He is still 

reachable by email. 
● Clarification on slip day/late policy

● Any questions?



Mutability and Nonlocal

● Consider the following example:

def outer():
x = 5
def inner():

x = 6 # Will this change the value of the outer x?
return inner()



Mutability and Nonlocal

def outer():
x = 5
def inner():

x = 6 # Will this change the value of the outer x?
return inner()

● inner() does not modify the outer variable; it will create a new local variable
● http://tinyurl.com/jxxanzl
● However…. http://tinyurl.com/jluwmfg

http://tinyurl.com/jxxanzl
http://tinyurl.com/jxxanzl
http://tinyurl.com/jluwmfg


Mutation and Nonlocal

● Mutable values can be changed inside inner()
● To change immutable values inside inner(), we must use the nonlocal 

keyword
● http://tinyurl.com/j42yu3w

● Nonlocal will not allow you to change global variables in this manner
● To do this, you must use the global keyword http://tinyurl.com/z766886

http://tinyurl.com/j42yu3w
http://tinyurl.com/j42yu3w
http://tinyurl.com/z766886


Exceptions

● Python raises an exception whenever an error occurs
○ ZeroDivisionError
○ ValueError

● Exceptions can be handled by the program, preventing a crash (next slide)
● Programs can also raise exceptions of their own (later in the course)



Handling Exceptions

● The following function won’t cause the program to crash, even if you try to 
divide by 0

def safe_divide(x, y):
quotient = “Error”
try:

quotient = x/y
except ZeroDivisionError:

print(“Can’t divide by zero!”)
return quotient


