
Sequences, Generators
Fall 2016, Lecture 9, 10/21/16

Sequence definition

A sequence has a finite length. An empty sequence has length 0.

A sequence has an element corresponding to any non-negative integer index

less than its length, starting at 0 for the first element.

So, a sequence is any data type that we can index into and get the length of.

Examples?

Sequences we’ve seen

We’ve been working with sequences all semester!

Examples:

Lists

Tuples

Strings

Note: a dictionary is NOT a sequence (can’t retrieve elements by index, is

unordered)

Iterables

Any object that you can use a for loop over

All sequences are iterable, but not at all iterables are sequences

Examples of iterables:

Lists

Strings

Tuples

Dictionaries

Iterables

Functions that return special data types

Range

Zip

Map

Are these data types sequences? Are they iterables?

Range

>>>	x	=	range(10)	

>>>	x	

range(0,	10)	

>>>	len(x) 	 	 	 	#	We	can	get	the	length	

10	

>>>	x[5] 	 	 	 	#	We	can	index		

5	

	

Map

>>>	y	=	map(lambda	x:	x**2,			[1,	2,	3])	

>>>	y	

<map	object	at	0x101a3cb38>	

>>>	len(y) 	 	 	 	 	 	#		We	can’t	

get	length	

Error!	

>>>	y[0] 	 	 	 	 	 	#		We	can’t	

index 				

Error!	
	

Zip

>>>	z	=	zip([1,	2,	3],			["hello",	"world",	"cs88"])	

>>>	z	

<zip	object	at	0x101c022c8>	

>>>	len(z) 	 	 	 	 	 	#	We	can’t	

get	length	

Error!	

>>>	z[0] 	 	 	 	 	 	 	#	We	

can’t	index	

Error!	

Functions that return iterables

Map, zip, and range return some sort of iterable

Other functions that return similar iterable data types:

filter()	

reversed()	

	

Try calling len() on and indexing into values returned by these/other

functions on your own time

Viewing the value in the iterable

How do we view the values inside these iterables?

For range, we were able to index, but could not see all values at once

For map and zip we couldn’t even index!

	
We could iterate over the iterable using a for loop

We can call list() or tuple()	on the iterable

What’s the point?

All of the values are never stored in memory at once

Each value is computed on demand - a concept called lazy evaluation

After we are done using a value, it’s no longer stored on the computer

If we want to save a value, we need to either bind it to a variable or loop

through iterable again

Big implications for big data! Allows us to work with huge amounts of data than

we can’t fit on the computer at once.

Data types of infinite length

We defined a sequence to be finite length

Can we have data types of infinite length? Or would space be an issue?

We can use lazy evaluation

How exactly would we do this? → Using a generator function

What if we tried to create an infinite length list? Computer won’t be happy.

Generator functions

Generator functions use iteration (for loops, while loops) and the yield

keyword

Generators functions have no return statement, but they don’t return None

They implicitly return a generator data type

Generator functions

Generators (the data type returned from a generator function) are iterables

that compute values lazily

Generators can also be of infinite length

Generator function: all_ones()	

>>>	def	all_ones():	
...					for	i	in	range(3):	
...									yield	1	
...		
>>>	all_ones	
<function	all_ones	at	0x101c00158>	
>>>	x	=	all_ones()	
>>>	x	
<generator	object	all_ones	at	0x101a37ea0>	
	

Infinite generator function: naturals()	

def	naturals():	

	i	=	1	

	while	True:	

	 	yield	i	

	 	i	+=	1	

	

>>>	for	elem	in	naturals():	

...	 	print(elem)	

...	

1	

2	

3	

(keeps	going,	never	ends)	

	

	

Generator function: all_pairs()	

We want to enumerate pairs of elements in a sequence, s

How would you implement an generator function that outputs these pairs?

Generator function: all_pairs()	

We can do this vary naturally using a generator function

Space and time complexity

For a list of n values

Time do we need to iterate over all values?

Space do we need to iterate over all values?

For an iterable of n values (assuming lazy evaluation)

Time to iterate over all values?

Space do we need to iterate over all values?

O(n) Linear

O(n)

O(n)
O(1) Constant!

