

Computational Structures in Data

Science

Lecture #12:
Quick: Exceptions

and SQL

UC Berkeley EECS
Adj. Assistant Prof.

Dr. Gerald Friedland

http://inst.eecs.berkeley.edu/~cs88 November 18th, 2016

Administrivia
•  Open Project: Starts Monday!

–  Creative data task
–  Similar to data8, except you write the code

•  Lab Monday: SQL
•  Lab Monday next week: Talk about Project

•  Homework: Extra days due to Thanksgiving

•  Lectures: This one, one more, and Q&A during
RRR week

11/18/16 UCB CS88 Fa16 L12 2

Computational Concepts Toolbox
•  Data type: values, literals,

operations,
•  Expressions, Call

expression
•  Variables
•  Assignment Statement
•  Sequences: tuple, list
•  Dictionaries

•  Data structures
•  Tuple assignment
•  Function Definition

Statement
•  Conditional Statement
•  Iteration: list comp, for,

while
•  Lambda function expr.

•  Higher Order Functions
–  as Values, Args, Results

•  Higher order function
patterns

– Map, Filter, Reduce
–  Function factories

•  Recursion
–  Linear, Tail, Tree

•  Abstract Data Types
•  Mutation
•  Iterators and Generators
•  Object Oriented

Programming
•  Classes
•  Exceptions
•  Declarative Programming

11/18/16 UCB CS88 Fa16 L12 3

Today: Exceptions (read 4.3)
•  Mechanism in a programming language to

declare and respond to “exceptional conditions”
–  enable non-local continuations of control

•  Often used to handle error conditions
–  Unhandled exceptions will cause python to halt and print a

stack trace
–  You already saw a non-error exception – end of iterator

•  Exceptions can be handled by the program
instead
– try, except, raise statements

•  Exceptions are objects!
–  They have classes with constructors

11/18/16 UCB CS88 Fa16 L12 4

Handling Errors
•  Function receives arguments of improper type?
•  Resource, e.g., file, is not available
•  Network connection is lost or times out?

11/18/16 UCB CS88 Fa16 L12 5

Example exceptions

•  Unhandled, thrown back to the top level interpreter
•  Or halt the Python program

>>> 3/0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> str.lower(1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object
but received a 'int'
>>> ""[2]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>>

11/18/16 UCB CS88 Fa16 L12 6

Functions
•  Q: What is a function supposed to do?
•  A: One thing well
•  Q: What should it do when it is passed

arguments that don’t make sense?

>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
???

>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog’)

????

11/18/16 UCB CS88 Fa16 L12 7

Exceptional exit from functions

•  Function doesn’t “return” but instead execution
is thrown out of the function

>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in divides
ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in get
KeyError: 'dog'
>>>

11/18/16 UCB CS88 Fa16 L12 8

Continue out of multiple calls deep

•  Recursion/Stack unwinds until exception is
handled or top

11/18/16 UCB CS88 Fa16 L12 9

Types of exceptions
•  TypeError -- A function was passed the wrong

number/type of argument
•  NameError -- A name wasn't found
•  KeyError -- A key wasn't found in a dictionary
•  RuntimeError -- Catch-all for troubles during

interpretation
•  . . .

11/18/16 UCB CS88 Fa16 L12 10

Flow of control stops at the exception
•  And is ‘thrown back’ to wherever it is caught

11/18/16 UCB CS88 Fa16 L12 11

Assert Statements
•  Allow you to make assertions about

assumptions that your code relies on
–  Use them liberally!
–  Incoming data is dirty till you’ve washed it

•  Raise an exception of type AssertionError
•  Ignored in optimize flag: python3 –O …

–  Governed by bool __debug__

assert <assertion expression>, <string for failed>

def divides(x, y):
 assert x != 0, ”Denominator must be non-zero”
 return y%x == 0

11/18/16 UCB CS88 Fa16 L12 12

Handling Errors – try / except

•  Wrap your code in try – except statements

•  Execution rule
–  <try suite> is executed first
–  If during this an exception is raised and not handled otherwise
–  And if the exception inherits from <exception class>
–  Then <except suite> is executed with <name> bound to the

exception

•  Control jumps to the except suite of the most
recent try that handles the exception

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
... # continue here if <try suite> succeeds w/o exception

11/18/16 UCB CS88 Fa16 L12 13

Raise statement
•  Exception are raised with a raise statement

 raise <exception>

•  <expression> must evaluate to a subclass of
BaseException or an instance of one

•  Exceptions are constructed like any other object
 TypeError(‘Bad argument’)

11/18/16 UCB CS88 Fa16 L12 14

Exceptions are Classes

4/18/16 UCB CS88 Sp16 L11 15

class NoiseyException(Exception):
 def __init__(self, stuff):
 print("Bad stuff happened", stuff)

try:
 return fun(x)
except:
 raise NoiseyException((fun, x))

Part II – Intro to Declarative Programming
 SQL

11/18/16 UCB CS88 Fa16 L12 16

Data 8 Tables

•  A single, simple, powerful data structure for all
•  Inspired by Excel, SQL, R, Pandas, Numpy, …

DSed @ UCB 17

ordered collection of labeled columns of anything

label

values

Numpy array T[‘label’]

dict, record,tuple

select, where, take, drop, group

join

stats, bin
sample
pivot,
pivot_bin

split

3/29/16

Database Management Systems
•  DBMS are persistent tables with powerful relational

operators
–  Important, heavily used, interesting !

•  A table is a collection of records, which are rows that
have a value for each column

•  Structure Query Language (SQL) is a declarative
programming language describing operations on tables

Name Latitude Longitude
Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93
table has
columns
and rows

row has a
value for
each column

column has
a name and
a type

11/18/16 UCB CS88 Fa16 L12 18

SQL
•  A declarative language

–  Described what to compute
–  Imperative languages, like python, describe how to compute it
–  Query processor (interpreter) chooses which of many equivalent

query plans to execute to perform the SQL statements

•  ANSI and ISO standard, but many variants
•  select statement creates a new table, either from

scratch or by projecting a table
•  create table statement gives a global name to a

table
•  Lots of other statements

–  analyze, delete, explain, insert, replace, update, …

•  The action is in select

11/18/16 UCB CS88 Fa16 L12 19

SQL example
•  SQL statements create tables

–  Give it a try with sqlite3 or http://kripken.github.io/sql.js/GUI/
–  Each statement ends with ‘;’

culler$ sqlite3
SQLite version 3.9.2 2015-11-02 18:31:45
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> select 38 as latitude, 122 as longitude, "Berkeley" as
name;
38|122|Berkeley
sqlite>

11/18/16 UCB CS88 Fa16 L12 20

select

•  Comma-separated list of column descriptions
•  Column description is an expression, optionally

followed by as and a column name

•  Selecting literals creates a one-row table
•  union of select statements is a table containing

the union of the rows
select 38 as latitude, 122 as longitude, "Berkeley" as name union
select 42, 71, "Cambridge" union
select 45, 93, "Minneapolis";

select [expression] as [name], [expression] as [name]; . . .

Latitude Longitude Name
38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis
11/18/16 UCB CS88 Fa16 L12 21

SQL: creating a named table

Latitude Longitude Name
38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

cities:

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis”;

11/18/16 UCB CS88 Fa16 L12 22

create table

•  SQL often used interactively
–  Result of select displayed to the user, but not stored

•  Create table statement gives the result a name
–  Like a variable, but for a permanent object

create table [name] as [select statement];

11/18/16 UCB CS88 Fa16 L12 23

SQL: using named tables - from

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";

select "west coast" as region, name from cities where longitude
>= 115 union
select "other", name from cities where longitude < 115

cities:

Region Name
west coast Berkeley

other Cambridge

other Minneapolis

Latitude Longitude Name
38 122 Berkeley

42 71 Cambridge

45 93 Minneapolis

11/18/16 UCB CS88 Fa16 L12 24

Projecting existing tables
•  Input table specified by from clause
•  Subset of rows selected using a where clause
•  Ordering of the selected rows declared using an
order by clause

select [columns] from [table] where [condition] order by [order] ;

select * from cities where longitude > 115 order by name;

Name Latitude Longitude
Cambridge 42 71

Minneapolis 45 93

11/18/16 UCB CS88 Fa16 L12 25

Joining tables
•  Two tables are joined by a comma to yield all

combinations of a row from each
create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";

create table climates as
 select "Berkeley" as city, "warm" as climate union
 select "Cambridge" as city, "cold" as climate;

select * from cities, climates

11/18/16 UCB CS88 Fa16 L12 26

Join / Where

create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";

create table climates as
 select "Berkeley" as city, "warm" as climate union
 select "Cambridge" as city, "cold" as climate;

select name, climate, latitude, longitude from cities, climates
where name = city;

11/18/16 UCB CS88 Fa16 L12 27

Aggregation and grouping
•  Reduction operators can be applied over

groupings of rows
create table cities as
 select 38 as latitude, 122 as longitude, "Berkeley" as name union
 select 42, 71, "Cambridge" union
 select 45, 93, "Minneapolis";

create table climates as
 select "Berkeley" as city, "warm" as climate union
 select "Cambridge" as city, "cold" as climate union
 select "Minneapolis" as city, "cold" as climate;

select climate, min(latitude) from cities, climates where name =
city group by climate;

11/18/16 UCB CS88 Fa16 L12 28

Summary
•  Exceptions provide a way to handle unexpected

cases and errors
•  Transfers control to enclosing handler of

matching type
–  assert, raise <expression> , try: … except <type> as <name>

•  SQL a declarative programming language on
relational tables

–  largely familiar to you from data8
–  create, select, where, order, group by, join

•  More in lab!

11/18/16 UCB CS88 Fa16 L12 29

