

Computational Structures in Data

Science

Lecture #13:
Performance, Distributed

Computing, Summary
UC Berkeley EECS
Adj. Assistant Prof.

Dr. Gerald Friedland

http://inst.eecs.berkeley.edu/~cs88 December 2nd, 2016

����������	�

http://www.cw.com.tw/article/article.action?id=5079340

Administrivia
•  This is the last lecture. Next week: Q&A for

finals.

•  Today: HKN review!
Please do the survey and give us good grades! ☺

•  Thank you:
–  TAs!
–  Lab Assistants!
–  UC Berkeley Staff!

12/02/16 UCB CS88 Fa16 L13 2

Computational Concepts Toolbox
•  Data type: values, literals,

operations,
•  Expressions, Call

expression
•  Variables
•  Assignment Statement
•  Sequences: tuple, list
•  Dictionaries

•  Data structures
•  Tuple assignment
•  Function Definition

Statement
•  Conditional Statement
•  Iteration: list comp, for,

while
•  Lambda function expr.

•  Higher Order Functions
–  as Values, Args, Results

•  Higher order function
patterns

– Map, Filter, Reduce
–  Function factories

•  Recursion
–  Linear, Tail, Tree

•  Abstract Data Types
•  Mutation
•  Iterators and Generators
•  Object Oriented

Programming, Classes
•  Exceptions
•  Declarative Programming
•  Distributed Computing

12/02/16 UCB CS88 Fa16 L13 3

Recap: Complexity
•  Example: Matrix Multiply

–  How many Multiplies? Adds? Ops? How much time ?
–  As a function of n ?

for i in 0 to n-1:
 for j in 0 to n-1:
 C[i][j] = 0
 for k in 0 to n-1:
 C[i][j] = C[i][j] + A[i][k]*B[k][j]

We say it is O(n3) “big-O of n3 “ as an asymptotic upper bound

time(n) < c " n3, for some suitably large constant c for any instance
of the inputs of size n.

12/02/16 UCB CS88 Fa16 L13 4

A more subtle complexity example

•  What is the “complexity” of finding the average
number of factors of numbers up to n?

def factors(n):
 return [x for x in range(2, max(n, ceil(sqrt(n))))
 if n % x == 0]
def ave_factor(n):
 all_factors = map(factors, range(n))
 all_lens = map(len, all_factors)
 return sum(all_lens)/n

n
n1/2

from timeit import default_timer as timer

def timeit(fun):
 ””” Rtn timer for fun(i) in secs. """
 def timer_fun(i):
 start = timer()
 fun(i)
 end = timer()
 return (end-start)
 return timer_fun

12/02/16 UCB CS88 Fa16 L13 5

How long does factors take?

12/02/16 UCB CS88 Fa16 L13 6

Big Data, Big Problems
•  Performance terminology

–  the FLOP: FLoating point OPeration
–  “flops” = # FLOP/second is the standard metric for

computing power
•  Example: Global Climate Modeling

– Divide the world into a grid (e.g. 10 km spacing)
–  Solve fluid dynamics equations for each point & minute

»  Requires about 100 Flops per grid point per minute
– Weather Prediction (7 days in 24 hours):

»  56 Gflops
– Climate Prediction (50 years in 30 days):

»  4.8 Tflops

•  Perspective
–  Intel Core i7 980 XE Desktop Processor

»  ~100 Gflops
»  Climate Prediction would take ~5 years www.epm.ornl.gov/chammp/chammp.html

•  Supercomputing – like those listed in top500.org
–  Multiple processors “all in one box / room” from one vendor that often

communicate through shared memory
–  This is often where you find exotic architectures

•  Distributed computing
–  Many separate computers (each with independent CPU, RAM, HD,

NIC) that communicate through a network
»  Grids (heterogenous computers across Internet)
»  Clusters (mostly homogeneous computers all in one room)

• Google uses commodity computers to exploit “knee in curve” price/
performance sweet spot

–  It’s about being able to solve “big” problems,
not “small” problems faster

»  These problems can be data (mostly) or CPU intensive

What Can We Do? Use Many CPUs!

12/02/16 UCB CS88 Fa16 L13 8

•  Functions as Data
•  Higher-Order Functions
•  Useful HOFs (you can build your own!)

–  map function over list
»  Report a new list, every element e of list becoming
function(e)

–  filter items such that predicate from list
»  Create a new list, keeping only elements e of list if
predicate(e)

–  reduce with function over list
»  Combine all the elements of list with
function(e)

•  Example:
filter # map # reduce

Recap: Filter, Map, Reduce

12/02/16 UCB CS88 Fa16 L13 9

•  Filter: Chunk data and
send to different CPUs.

•  Map: Apply function to
data chunks on different
CPUs.

•  Reduce: Combine results
from different CPUs.

–  Reducer should be associative
and commutative

•  Imagine 10,000 machines
ready to help you compute
anything you could cast as
a MapReduce problem!

–  This is the abstraction
Google is famous for
authoring

–  The system takes care of
load balancing, dead
machines, etc.

Google’s MapReduce Simplified
en.wikipedia.org/wiki/MapReduce

1 20 3 10

* * * *

1 400 9 100
+ +

401 109
+

510 Output:

Input:

12/02/16 UCB CS88 Fa16 L13 10

MapReduce: Advantages/Disadvantages

•  Now it’s easy to program for many CPUs
– Communication management effectively gone
–  Fault tolerance, monitoring

»  machine failures, suddenly-slow machines, etc are
handled

– Can be much easier to design and program!
– Can cascade several (many?) MapReduce tasks

•  But… it might restrict solvable problems
– Might be hard to express problem in MapReduce
– Data parallelism is key

»  Need to be able to break up a problem by data chunks

12/02/16 UCB CS88 Fa16 L13 11

Apache Spark (from Berkeley)
•  Data processing system that provides a simple

interface to analytics on large data
•  A Resilient Distributed Dataset (RDD) is a

collection of values or key-value pairs
•  Support the operations you are familiar with

–  Data-Parallel: map, filter, reduce
–  Database: join, union, intersect
–  OS: sort, distinct, count

•  All of can be performed on RDDs that are
partitioned across machines

12/02/16 UCB CS88 Fa16 L13 12

Spark Execution Model
Processing is defined centrally and executed
remotely
•  A RDD is distributed over workers
•  A driver program defines transformations and actions on

RDDs
•  A cluster manager assigns task to workers
•  Workers perform computation, store data, & communicate

with each other
•  Final results communicate back to driver

12/02/16 UCB CS88 Fa16 L13 13

Distributed Computing Challenges
•  Communication is fundamental difficulty

– Distributing data, updating shared resource,
communicating results, handling failures

– Machines have separate memories, so need
network

– Introduces inefficiencies: overhead, waiting,
etc.

•  Need to parallelize algorithms, data
structures

– Must look at problems from parallel
standpoint

– Best for problems whose compute times >>
overhead

12/02/16 UCB CS88 Fa16 L13 14

•  Applications can almost never be completely parallelized; some serial
code remains

•  s is serial fraction of program, P is # of cores (was processors)

•  Amdahl’s law:

Speedup(P) = Time(1) / Time(P)

 1 / (s + [(1-s) / P)], and as P → �

 1 / s

Speedup Issues: Amdahl’s Law

Time

Number of Cores

Parallel portion

Serial portion

1 2 3 4 5

12/02/16 UCB CS88 Fa16 L13 15

Amdahl’s Law: Conclusion

•  Computer Science View: Even if the parallel portion
of your application speeds up perfectly, your
performance will be limited by the sequential portion.

$

•  Data Science View: Often, as the data gets large,
the work that can be parallelized grows faster than
the size of the data.
☺

Fundamental Change in Perspective!

12/02/16 UCB CS88 Fa16 L13 16

Summary: Data science

https://www.youtube.com/watch?v=TzxmjbL-i4Y

12/02/16 UCB CS88 Fa16 L13 17

Summary: CS88 a journey!
•  Data type: values, literals,

operations,
•  Expressions, Call

expression
•  Variables
•  Assignment Statement
•  Sequences: tuple, list
•  Dictionaries

•  Data structures
•  Tuple assignment
•  Function Definition

Statement
•  Conditional Statement
•  Iteration: list comp, for,

while
•  Lambda function expr.

•  Higher Order Functions
–  as Values, Args, Results

•  Higher order function
patterns

– Map, Filter, Reduce
–  Function factories

•  Recursion
–  Linear, Tail, Tree

•  Abstract Data Types
•  Mutation
•  Iterators and Generators
•  Object Oriented

Programming, Classes
•  Exceptions
•  Declarative Programming
•  Distributed Computing

12/02/16 UCB CS88 Fa16 L13 18

Final thought: A note of caution

https://www.youtube.com/watch?v=bqWuioPHhz0

12/02/16 UCB CS88 Fa16 L13 19

CS88: Final slide

Thank you so much!

12/02/16 UCB CS88 Fa16 L13 20

