

Computational Structures in Data Science

UC Berkeley EECS Adj. Assistant Prof. **Dr. Gerald Friedland**

Lecture #13: **Performance**, **Distributed Computing, Summary**

千人狂歡 最受歡迎的程式課

http://www.cw.com.tw/article/article.action?id=5079340

December 2nd, 2016

http://inst.eecs.berkeley.edu/~cs88

位

Computational Concepts Toolbox

- Data type: values, literals, operations,
- Expressions, Call expression
- Variables
- Assignment Statement
- · Sequences: tuple, list
- Dictionaries
- Data structures
- Tuple assignment
- Function Definition Statement
- Conditional Statement Iteration: list comp, for,
- while
 - Lambda function expr.

- Higher Order Functions - as Values, Args, Results
- Higher order function patterns
 - Map, Filter, Reduce - Function factories
- Recursion
- Linear, Tail, Tree
- Abstract Data Types
- Mutation
- Iterators and Generators
- Object Oriented
- Programming, Classes
- Exceptions
- Declarative Programming
- Distributed Computing

Administrivia

- This is the last lecture. Next week: Q&A for finals.
- Today: HKN review! Please do the survey and give us good grades! ©
- Thank you:
 - TAs!
 - Lab Assistants!
 - UC Berkeley Staff!

12/02/16

UCB CS88 Fa16 L13

Recap: Complexity

- Example: Matrix Multiply
 - How many Multiplies? Adds? Ops? How much time? - As a function of n?

```
for i in 0 to n-1:
    for j in 0 to n-1:
       C[i][j] = 0
        for k in 0 to n-1:
            C[i][j] = C[i][j] + A[i][k]*B[k][j]
```

We say it is O(n³) "big-O of n³" as an asymptotic upper bound

time(n) < $c \cdot n^3$, for some suitably large constant c for any instance of the inputs of size n.

12/02/16

UCB CS88 Fa16 L13

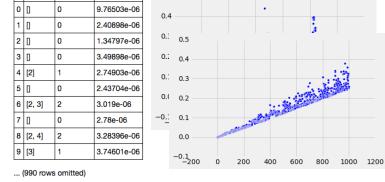
A more subtle complexity example

• What is the "complexity" of finding the average number of factors of numbers up to n?

from timeit import default_timer as timer
<pre>def timeit(fun): """ Rtn timer for fun(i) in secs. """ def timer_fun(i): start = timer() fun(i) end = timer() return (end-start) return timer_fun</pre>
12/02/16 UCB CS88 Fa

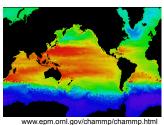
How long does factors take?

In [9]: tbl = Table().with_column('n', np.arange(0,1000, 1))
tbl['factors'] = tbl.apply(factors, 'n')
tbl['n_factors'] = tbl.apply(len, 'factors')
tbl['secs'] = tbl.apply(timeit(factors), 'n')
tbl
Out[9]: n factors n_factors secs
0.5



Big Data, Big Problems

- Performance terminology
 - the FLOP: FLoating point OPeration
 - "flops" = # FLOP/second is the standard metric for computing power
- Example: Global Climate Modeling
 - Divide the world into a grid (e.g. 10 km spacing)
 - Solve fluid dynamics equations for each point & minute
 » Requires about 100 Flops per grid point per minute
 - Weather Prediction (7 days in 24 hours):
 - » 56 Gflops
 - Climate Prediction (50 years in 30 days):
 » 4.8 Tflops
- Perspective
 - Intel Core i7 980 XE Desktop Processor
 - » ~100 Gflops
 - » Climate Prediction would take ~5 years



What Can We Do? Use Many CPUs!

UCB CS88 Fa16 L13

- **Supercomputing** like those listed in top500.org
 - Multiple processors "all in one box / room" from one vendor that often communicate through shared memory
 - This is often where you find exotic architectures

• Distributed computing

- Many separate computers (each with independent CPU, RAM, HD, NIC) that communicate through a network
 - » Grids (heterogenous computers across Internet)
 - » <u>Clusters</u> (mostly homogeneous computers all in one room)
 - Google uses commodity computers to exploit "knee in curve" price/ performance sweet spot
- It's about being able to solve "big" problems, not "small" problems faster
 - » These problems can be \underline{data} (mostly) or \underline{CPU} intensive

UCB CS88 Fa16 L13

12/02/16

Recap: Filter, Map, Reduce

- Functions as Data
- Higher-Order Functions
- Useful HOFs (you can build your own!)
 - map function over list
 - » Report a new list, every element e of list becoming function(e)
 - filter items such that <u>predicate</u> from <u>list</u>
 » Create a new list, keeping only elements e of list if
 - » Create a new list, keeping only elements e of list predicate(e)
 - reduce with <u>function</u> over <u>list</u>
 » Combine all the elements of list with function(e)

• Example:

filter \rightarrow map \rightarrow reduce

12/02/16

UCB CS88 Fa16 L13

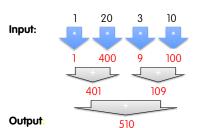
MapReduce: Advantages/Disadvantages

- Now it's easy to program for many CPUs
 - Communication management effectively gone
 - Fault tolerance, monitoring
 - » machine failures, suddenly-slow machines, etc are handled
 - Can be much easier to design and program!
 - Can cascade several (many?) MapReduce tasks
- · But... it might restrict solvable problems
 - Might be hard to express problem in MapReduce
 - Data parallelism is key
 - » Need to be able to break up a problem by data chunks

Google's MapReduce Simplified

- Filter: Chunk data and send to different CPUs.
- Map: Apply function to data chunks on different CPUs.
- Reduce: Combine results from different CPUs.
 - Reducer should be associative and commutative
- Imagine 10,000 machines ready to help you compute anything you could cast as a MapReduce problem!
 - This is the abstraction Google is famous for authoring
 - The system takes care of load balancing, dead machines, etc.

en.wikipedia.org/wiki/Map



10

Apache Spark (from Berkeley)

Data processing system that provides a simple interface to analytics on large data

UCB CS88 Fa16 L13

- A Resilient Distributed Dataset (RDD) is a collection of values or key-value pairs
- · Support the operations you are familiar with
 - Data-Parallel: map, filter, reduce
 - Database: join, union, intersect
 - OS: sort, distinct, count
- All of can be performed on RDDs that are partitioned across machines

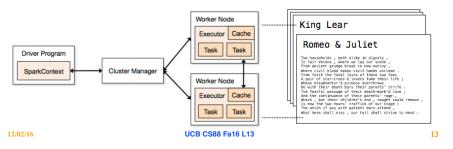
11

12/02/16

Spark Execution Model

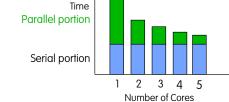
Processing is defined centrally and executed remotely

- · A RDD is distributed over workers
- A driver program defines transformations and actions on RDDs
- A cluster manager assigns task to workers
- Workers perform computation, store data, & communicate with each other
- · Final results communicate back to driver



Speedup Issues: Amdahl's Law

Applications can almost <u>never</u> be completely parallelized; some serial code remains



- s is serial fraction of program, P is # of cores (was processors)
- Amdahl's law:
- Speedup(P) = Time(1) / Time(P)

```
\leq 1 / ( s + [ (1-s) / P) ], and as P 
ightarrow \infty
```


Distributed Computing Challenges

- · Communication is fundamental difficulty
 - Distributing data, updating shared resource, communicating results, handling failures
 - Machines have separate memories, so need network
 - Introduces inefficiencies: overhead, waiting, etc.
- Need to parallelize algorithms, data structures
 - Must look at problems from parallel standpoint
 - Best for problems whose compute times >> overhead

```
12/02/16
```

UCB CS88 Fa16 L13

14

Amdahl's Law: Conclusion

- **Data Science View:** Often, as the data gets large, the work that can be parallelized grows faster than the size of the data.

Fundamental Change in Perspective!

12/02/16

Summary: Data science

https://www.youtube.com/watch?v=TzxmjbL-i4Y

12/02/16

UCB CS88 Fa16 L13

17

Final thought: A note of caution

https://www.youtube.com/watch?v=bgWuioPHhz0

Summary: CS88 a journey!

- Data type: values, literals, operations,
- Expressions, Call expression
- Variables
- Assignment Statement
- Sequences: tuple, list •
- Dictionaries
- Data structures
- Tuple assignment
- Function Definition Statement
- Conditional Statement
- Iteration: list comp, for, while
- Lambda function expr.
- 12/02/16

Higher Order Functions - as Values, Args, Results

- Higher order function patterns
 - Map, Filter, Reduce
 - Function factories
- Recursion
 - Linear, Tail, Tree
- Abstract Data Types
- Mutation
- Iterators and Generators
- Object Oriented Programming, Classes
- Exceptions
- Declarative Programming
- Distributed Computing

UCB CS88 Fa16 L13

18

Thank you so much!

12/02/16

20