Functions and Control Structures

David E. Culler
CS8 - Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 3 (there is no lecture 2)
September 10, 2018

http://inst.eecs.berkeley.edu/~cs88

Data Science in the News

(@ waterchallenge.data.ca.gov * H
I Apps [OpenBAS-demo [} exec [] amplab-room [project-repos [CS-IT ESuPMU [1 Chair Viewer » [Other Bool

Safe Drinking Water Data Challenge =1
GOV #CAWaterDataChallenge

Data & Resources The Challenge Get Involved FAQ Media Submit

Photo by The
California Department
of Water Resources

L
S

WEST _— s & BAYAREA
RLDATA WA TTm‘R gfm 3 IMAGINE |4/ H,0 % Nl
g

2018 Safe Drinking Water Data Challenge

This series of events and community-led activities includes engagements such as National Day of Civic
Hacking, online tutorials, fireside chats, and hackathons. They will all culminate in a summit and awards
ceremony recognizing teams and partners that have worked hard throughout the summer to ensure every
Californian has access to safe drinking water. Submissions are due by October 1 and the Summit and Award

UCB CS88 Fa18 L

UNE Zios 2018
GRAPAICS by
steph@ TorcECTVE. OM
| plrepmapes

California Water Data Hackathon

The Division of Data Sciences at UC Berkeley and the Berkeley Institute
September 14, 2018 to for Data Science (BIDS) are hosting the California Water Data
September 15, 2018 Hackathon to help find innovative ways to increase community access to
10:00am to 5:00pm safe drinking water, better understand vulnerabilities, and identify and
190 Doe Library deploy solutions. This event will immediately follow the Glob:
GET DIRECTIONS Action Summit in San Francisco @' (#GCAS2018), and is just

events and efforts supporting this year’s California Safe Drinking Water
m Data Challenge (2 onJune 26 - October 1, 2018

(#CAWaterDataChallenge).

SHARE EVENT

California Water Data Hackathon
Dates: September 14-15, 2018
Location: BIDS (190 Doe Library UC Berkeley)

Administrative issues

Waitlist and Concurrent Enrolilment Accepted

Weekly Schedule
— Monday Lecture => Read => Friday Lab => Homework (Due Th)

Lab Assignments complete

Culler Office Hours after class — here to BIDS 190E
— Room in the back on the right

UCB CS88 Fa18 L3

{71 lab00 — bash — 80x24
NEURNET.ast login: Sun Jan 31 08:03:37 on ttys004

Davids-MacBook-Pro:lab culler$ cd lab00

pycache lab00.ok 1lab00.py 1lab00.py~

| MON
< 2 B o 1o S
Favorites Name Date Modified
72} culler v [lab Today, 8:01 AM
@ Al My Files v [| lab00 Jan 17, 2016, 11:09 AM
y » [_pycache__ Jan 17, 2016, 11:09 AM
¢ iCloud Drive 1ab00.ok Jan 17, @ PY
@) Airbrop “ 1ab00.py
lab00.py~ NET 4 Davids-MacBook-Pro:~ culler$ pwd
:/'A\: Applications /Users/culler
ok Jan 17 Davids-MacBook-Pro:~ culler$ cd cs88
@ Desktop i 1ab00.zip NETsR N4 Davids-MacBook-Pro:cs88 culler$ cd lab
> - J Davids-MacBook—Pro:lab culler$ 1s
[§ Documents - projects an 17 senen 1ab00.zip
o Downloads Davids-MacBook-Pro:1ab00 culler$ 1s
Devices Davids-MacBook-Pro:1ab00 cullers$
[David’s M...
— & Macintosh HD » [Users » % culler »

« Big Idea: Layers of Abstraction

— The GUI look and feel is built out of files, directories, system
code, etc.

UCB CS88 Fa18 L3

Computational Concepts Toolbox

UCB CS88 Fa18 L3

Computational Concepts Toolbox

Data type: the “kind” of value and what you can do
with it
— Integers, Floats, Booleans, Strings, [tuples]
* Operators
— Arithmetic: +, -, *, 1, I, %, **
— Boolean: or, and, not
— Comparison: <, <=, ==, I=, >=, >
— Membership: in, is, is not
— Conditional expression: <t_exp> if <cond> else <f_exp>

 Values

— literals, variables, results of expression

,aﬁ Expressmns Compute a value
— Valid use of operators and values
— Call expression: <fun>(<arg1>, ...)

UCB CS88 Fa18 L3

Call Expressions

Evaluate a function on some arguments
What would be some useful functions?

builtin functions
— https://docs.python.org/3/library/functions.html
— min, max, sum

https://docs.python.org/3/library/
str
import math; help(math)

UCB CS88 Fa18 L3

https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/

Computational Concepts Toolbox

- Data type

* Operators

* Values
 Expressions

 Statements — take an action

« Assignment Statement
— <variable> = <expression>

« Sequence of Statements
), >x=3

2N >y =2
: > print(x+y)

UCB CS88 Fa18 L3

Defining a Function

def <function name> (<argument list>)

b

indent 4 spaces) _
return expression

* Generalizes an expression or set of statements
to apply to lots of instances

* A lot like a mathematical function
— maps domain to range, but can do more ...

* A function should do one thing well

UCB CS88 Fa18 L3

Calling and Returning Results

Statement : ...
Statement: ... <op> £
Statement: ...
Statement: ...

(arg expl,

def fun (parameter, ..) :
statement:
statement:
turn <expre

1/25/16 UCB CS88 Fa18 L3 10

Example

—

\
x=3 |)

y =4 + max(17, x+6) * 0.1
z=xly

def max (x, y) :
return x if x > else y

UCB CS88 Fa18 L3

Computational Concepts Toolbox

Data type
Operators
Values
Expressions

Sequence of Statements
— Assignment
— Function Definition — like assigning to the function name
— Return

UCB CS88 Fa18 L3

Computational Concepts today

Good Function Definitions
Conditional Statement
Iteration: data-driven (list comprehension)

Iteration: control-driven (for statement)
— Structured

Iteration: while statement
— More primitive and more general

Big Idea: Software Design Patterns

UCB CS88 Fa18 L3

How to write a good function

Name the function to describe what it does

— Function names should be lowercase, with words separated by
underscores as necessary to improve readability

Choose meaning parameter names
— Variable names follow the same convention as function names.

Write the docstring to explain what it does
— Not how it does it. What does it return?

Write doctest to show what it should do.
— Before you write any code

Write the code to do it

Python Style Guide: https://www.python.org/dev/peps/pep-0008/

UCB CS88 Fa18 L3

https://www.python.org/dev/peps/pep-0008

Example: Prime numbers

"figure this out"|

Prime number

From Wikipedia, the free encyclopedia

"Prime" redirects here. For other uses, see Prime (disambiguation).

A prime number (or a prime) is a natural number greater than 1 that cannot be formed by multiplying
two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite
number. For example, 5 is prime because the only ways of writing it as a product, 1 x50r5x 1,
involve 5 itself. However, 6 is composite because it is the product of two numbers (2 x 3) that are both
smaller than 6. Primes are central in number theory because of the fundamental theorem of
arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a
product of primes that is unique up to their order.

UCB CS88 Fa18 L3

How’s this work?

(datascience)CullerMac:ideas cullers$ 1s
__pycache__ fun.py lab®l.py primel.py
(datascience)CullerMac:ideas culler$ python -m doctest primel.py
B e
File "/Users/culler/Classes/CS588-FalB/ideas/primel.py", line 4, in primel.prime
Failed example:
prime(2)
Expected:

True
Got:

'figure this out'

B o
File "/Users/culler/Classes/CSBB-FalB/ideas/primel.py", line 6, in primel.prime
Failed example:
prime(3)
Expected:

True
Got:

'figure this out'
B
File "/Users/culler/Classes/CS5B8B-FalB/ideas/primel.py", line B, in primel.prime
Failed example:

prime(4)

Expected:

False
Got:

'figure this out'

B e
1 items had failures:
3 of 3 in primel.prime
*¥*Test Failed*x* 3 failures.
(datascience)CullerMac:ideas cullers |

UCB CS88 Fa18 L3

Building some tools

def divides(number, divider):

(number * divider)

UCB CS88 Fa18 L3

A sequence data type

« Alist is an object consisting of an order
sequence of values

 Its literal is [itemO, item1, ...]
* In data8 you’ve seen numpy arrays

=== [1, 2, 3]

[1, 2, 3]

=== x = [1, 2, 3]

>>> import numpy as np
»>> NX = np.array(x)
=== NX

array([1, 2, 3])

=== NX + Nx

arrayl([2, 4, 6])

=== X + X

(1, 2, 3, 1, 2, 3]
=== NX%3

arrayl([3, 6, 9])

=== X*3

[1, 2, 3, 1, 2, 3, 1, 2, 3]
=== []

(]

===

UCB CS88 Fa18 L3

Data-driven iteration

« describe an expression to perform on each item
in a sequence

* |let the data dictate the control
« Called “list comprehension”

[<expr with loop var> for <loop var> in <sequence expr >]

UCB CS88 Fa18 L3

Building Tools cont.

def dividers(n):

[divides(n,i) ' range(2,n)]

T J & W F7 S o n

T S ¥ WA WS —

(datasc1ence)Cu11erMac ideas culler$ python -1 primel.py

»»> divides(24, 6)

True

»»> dividers(12)
[True, True, True, False, True, False, False, False, False, False]

e I

UCB CS88 Fa18 L3

Building Tools cont.

UNREGISTERED

. pY dividers.py

def divides(number, divider):

(number % divider)

def dividers(n):

[divides(n, i) i range(2,(n//2)+1) 1]

culler$s python -m doctest dividers.py
cullers

datascience)CullerMac:ideas culler$ python -1 dividers.py
»>>> dividers(17)

[False, False, False, False, False, False, False]

==

[Line 18, Column 54 Tab Size: 4 Python

UCB CS88 Fa18 L3

for statement — iteration control

* Repeat a block of statements for a structured
sequence of variable bindings

<jnitialization statements>

for <variables> 1N <sequence expression>$

E:i%<body statements>

<rest of the program>

UCB CS88 Fa18 L3

A very basic tool

UNREGISTERED

4)p fun.py cumor.py
def cum OR(1lst):

co False
item 1st:
Co = CO item
co

[Line 12, Column 1 Tab Size: 4 Python

* Initialize a variable before loop
 Update it in each iteration
* Final result on exit

UCB CS88 Fa18 L3

Putting it together

O UNREGISTERED

prime3.py

def divides(number, divider):

(number * divider)

def dividers(n):

[divides(n,i) i range(2,(n//2)+1) 1]

def cum_OR(1lst):

(datascience)CullerMac:ideas culler$ python -m doctest prime3.py
{datascience)CullerMac:ideas culler$ python -i prime3.py

co = Fal
item 1st:
co = Co item
co

def prime(n): >»> prime(-17)

cum_OR(dividers(n))

[Line 43, Column 35 Tab Size: 4 Python

UCB CS88 Fa18 L3

Conditional statement

Do some statements, conditional on a predicate
expression

if <predicate>:
<true statements>

__

UCB CS88 Fa18 L3

Getting it right

UNREGISTERED

def prime(n):

cum_OR(dividers(n))

[Line 47, Column 10 Tab Size: 4 Python

« Conditional used to handle the special case
— Guards whether the logic applies

UCB CS88 Fa18 L3

Beware the conditional mess

UNREGISTERED

4)r [EL L YA
def divides(number, divider):

(number “ divider)

result = True

result False
result

(. Line 2, Column 54 Tab Size: 4 Python

 What’s wrong with this function?

UCB CS88 Fa18 L3

Combining Concepts

UNREGISTERED

def divides(number, divider):

(number * divider)

def dividers(n):

[divides(n,i) i range(2,(n//2)+1)]

def prime(n):

n 748
Fal

alse
d dividers(n):
. False

True

[Line 19, Column 54 Tab Size: 4 Python

e Return does not have to be at the end

— Nesting within conditionals can simplify expression
UCB CS88 Fa18 L3

Conditional list comprehension

UNREGISTERED

def prime(n):

n .

d dividers(n):
d: Fal

def primes(n):

[i i range(2,n) prime(i)]

= Line 42, Column 47 Tab Size: 4 Python

(datascience)CullerMac:ideas culler$ python -i prime5.py

»>>> primes(10)

[2, 3, 5, 7]

>>> primes(100)

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 7

9, 83, 89, 97]

UCB CS88 Fa18 L3

while statement — iteration control

 Repeat a block of statements until a predicate
expression is satisfied

<jnitialization statements>

while <predicate expression>$
<body statements>

<rest of the program>

UCB CS88 Fa18 L3

Putting even more together

UNREGISTERED

def first_primes(k):

primes = []

num = 2
len(primes) < k :
prime(num) :

primes = primes + [num]
num = num
primes

[Line 48, Column 12 Tab Size: 4 Python

 lteration not simple linear sequence
« Accumulation of values distinct from control

UCB CS88 Fa18 L3

Computational Concepts Toolbox

Data type
Operators
Values => scalars, functions & sequences

Expressions
— lIteration: data-driven (list comprehension)

Sequence of Statements
— Assignment
— Function Definition — with doctest
— Return
— Conditionals

AT Iteration: control-driven (for statement)

— Structured

Iteration: while statement
— More primitive and more general

UCB CS88 Fa18 L3

