Recursion

David E. Culler
CS8 — Computational Structures in Data Science
http://inst.eecs.berkeley.edu/~cs88

Lecture 5
Sept 24, 2018

http://inst.eecs.berkeley.edu/~cs88

Computational Concepts Toolbox

e Data type: values, literals, e |teration:
operations, — data-driven (list
- e.g., int, float, string comprehension)
* Expressions, Call — control-driven (for
expression statement)
* Variables — while statement
* Assignment Statement e Higher Order Functions
 Sequences: tuple, list — Functions as Values
— indexing — Functions with functions as
e Data structures arg“_'me"t .
] — Assignment of function
 Tuple assignment values

e Call Expressions * Higher order function

z, Function Definition patterns
Statement — Map, Filter, Reduce

Conditional Statement * Function factories — create
and return functions

UCB CS88 Sp16 L4

Today: Recursion

re-cur-sion
Iri'’karZHan/ 4

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

re-cur-sive
[ri' karsiv/ €

adjective

characterized by recurrence or repetition, in particular.

« MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

* Recursive function calls itself, directly or indirectly

UCB CS88 Sp16 L4

Administrative Issues

e Midterm exam: wed Oct 3 6-8 pm
— Room based on last digit of SID
— 0-5LeConte 1 (60%)
— 6-9: VLSB 2040
— Alternative and accommodations during 5-9 by request

 Labs are to help you learn the materials, so
please make full use of them

e Materials will go through 10/1 Lecture

o Office hours start here after class and migrate
down to BIDS in 190 Doe Library

UCB CS88 Sp16 L4

Review: Higher Order Functions

 Functions that operate on functions
e A function

def odd (x) :
return x%2

>>> odd (3)
1

e A function that takes a function arg

def filter(fun, sS) :

return [x for x in s if fun (x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[ll 3’ 5’ 7]

UCB CS88 Sp16 L4

Review Higher Order Functions (cont)

e A function that returns (makes) a function

def leqg maker(c):
def leg(val) :
return val <= C
return leq

>>> leqg maker (3)
<function leq maker.<locals>.leqg at 0x1019d8c80>

>>> leqg maker (3) (4)

False
>>> filter(leq maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]

>>>

UCB CS88 Sp16 L4

One more example

e What does this function do?

def split fun(p, s):
mrr Returns <you f£ill this ins>."""
return [1 for 1 in s if p(i)], [1i for 1 in s if not p(1i)]

>>> split fun(leq maker(3), [0,1,2,3,4,5,6])
([o, 1, 2, 3], [4, 5, 6])

UCB CS88 Sp16 L4

Recall: Iteration

1. Initialize the “base” case of no iterations

2. Starting val
def sum of squares(n): arng vere

accum = 0 /2 3. Ending value

for i in range(l,n+l):

accum =_accum + 1*1i

return accuSEQQE;?\\\

4. New loop variable value

 Loops are a simple form of recursion — linear
recursion

UCB CS88 Sp16 L4

Remember

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

bonacci(0) == 1

-

where fibonacci(l) == £

2/22/16 UCB CS88 Sp16 L4 9

Recursion Key concepts — by example

SN

1. Test for simple “base” case 2. Solution in simple “base” case

i

def su
if

else:

of squares (H) :
n < 1l:
return 0

return sum of squares(n-1) #\n**z

I\ N

3. Assume recusive solution
to simpler problem

4. Transform soln of simpler
problem into full soln

UCB CS88 Sp16 L4

In words

e The sum of no numbers is zero

e The sum of 12 through n?is the
— sum of 12 through (n-1)>2
— plus n?

def sum of squares(n):
if n < 1:
return O
else:
return sum of squares(n-1) + n**2

UCB CS88 Sp16 L4

Why does it work

sum of squares(3)

sum of squares(3) => sum of squares(2) + 3**2

=> sum of squares(l) + 2%*2 4+ 3*%*2

=> sum of squares(0) + 1**2 4 2%%2 4 3%*2
=> 0 + 1*%*%2 + 2%%2 4 3*%*%2 = 14

UCB CS88 Sp16 L4

How does it work?

 Each recursive call gets its own local variables
— Just like any other function call

« Computes its result (possibly using additional
calls)

— Just like any other function call

e Returns its result and returns control to its caller
— Just like any other function call

 The function that is called happens to be itself
— Called on a simpler problem
— Eventually bottoms out on the simple base case

 Reason about correctness “by induction”
— Solve a base case

— Assuming a solution to a smaller problem, extend it

UCB CS88 Sp16 L4

Questions

* In what order do we sum the squares ?
* How does this compare to iterative approach ?

def sum of squares(n):

accum = 0
for i in range(l,n+l):
accum = accum + 1i*i

return accum

def sum of squares(n):
if n< 1:
return 0
else:
return sum of squares(n-1) + n**2

def sum of squares(n):
if n < 1:
return 0
else:

return n**2 + sum of squares(n-1)
UCB CS88 Sp16 L4

Local variables

~_—
(X]

def sum;of_squares{ﬁj
n squared = n**2
if n < 1:
return 0O
else:
return n squared|+| sum of squares(n-1)

e Each call has its own “frame” of local variables

 What about globals?
* Let’s see the environment diagrams

https://goo.gl/CiFaUJ

UCB CS88 Sp16 L4

https://goo.gl/CiFaUJ

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2 /4)
. L sum_of_squares
if n ==
return 1
else:

return n_squared + sum_of_squares(n-1)

=) sum_of_squares(3)

Edit code

<<First <Back Step 2 of 17 Forward> Last >>

Python 3.3 Frames Objects
= 1 def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall]
n_squared = n**2
SF e sum_of_squares
return 1
else: fl: sum_of_squares [parent=Global]
return n_squared + sum_of_squares(n-1) n '3

sum_of_squares(3)

Edit code

<<First <Back Step 3 of 17 | Forward > Last >>

pythontutor.com

UCB CS88 Sp16 L4

http://pythontutor.com/visualize.html#code=def+sum_of_squares(n):%0D%0A++++n_squared+=+n**2%0D%0A++++if+n+%3C+1:%0D%0A++++++++return+0%0D%0A++++else:%0D%0A++++++++return+n_squared+++sum_of_squares(n-1)%0D%0Asum_of_squares(3)&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=false&textReferences=false&py=2&rawInputLstJSON=[]&curInstr=0

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code
0

<<First <Back Step 5o0f 17 | Forward> | Last>>

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared 9

Frames

Global frame

sum_of_squares

n 3

n_squared 9

UCB CS88 Sp16 L4

fl: sum_of_squares [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Environments Example

Python 3.3

= def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

Python 3.3

def sum_of_squares(n):
n_squared = n**2
= if n == 1:
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0

<<First <Back Step 9 of 17 | Forward> | Last>>

Global frame

Global frame

UCB CS88 Sp16 L4

Frames

sum_of_squares

fl: sum_of_squares [parent=Global]

n |3

n_squared |9

f2: sum_of_squares [parent=Global]

n 2

Frames

sum_of_squares

fl: sum_of_squares [parent=Global]

n |3

n_squared |9

f2: sum_of_squares [parent=Global]

n 2

n_squared |4

Objects

func sum_of_squares(n) [parent=Globall

Objects

func sum_of_squares(n) [parent=Global]

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
- return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code
0

<<First <Back Step 10 of 17 | Forward> | Last>>

Python 3.3

= def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

0

<< First <Back Step 11 of 17 | Forward > Last >>

that has just executed
- line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared |4

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Globall
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

f3: sum_of_squares [parent=Globall

n 1

UCB CS88 Sp16 L4

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 13 of 17 | Forward> | Last>>

that has just executed
t line to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
= return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 14 of 17 | Forward > Last >>

that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n |1

n_squared 1

Frames Objects

Global frame func sum_of_squares(n) [parent=Globall]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1

http://pythontutor.com/composingprograms.html#code=def+sum_of_squares(n):%0A++++n_squared+=+n**2%0A++++if+n+==+1:%0A++++++++return+1%0A++++else:%0A++++++++return+n_squared+++sum_of_squares(n-1)%0A++++++++%0Asum_of_squares(3)%0A&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=1

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 15 0of 17 | Forward> | Last>>

e that has just executed
xt line to execute

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n |1

n_squared |1

Return 1
value

UCB CS88 Sp16 L4

Objects

func sum_of_squares(n)

[parent=Globall

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 16 of 17 | Forward > Last >>

 that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Globall]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Globall]
n 2

n_squared 4

Return 5
value

f3: sum_of_squares [parent=Global]
n |1
n_squared |1

Return
value

UCB CS88 Sp16 L4

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 17 of 17 | Forward> | Last>>

> that has just executed
<t line to execute

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3
n_squared |9

Return 14
value

f2: sum_of_squares [parent=Globall]
n 2
n_squared |4

Return 5
value

f3: sum_of_squares [parent=Globall]
n 1
n_squared |1

Return 1
value

UCB CS88 Sp16 L4

Objects

func sum_of_squares(n)

[parent=Global]

Another Example

indexing an element of a sequence

def first(s):
"""Return t st element in a sequence."""

return s[0]
def rest(s):
""n"Return all elements in a sequence after the first"""

return s[1l:]

Slicing a sequence of elements

def min r(s):
wrrnReturn minimum value in a sequence.”””

 Recursion over sequence length, rather than
number magnitude

2/22/16 UCB CS88 Sp16 L4 24

Visualize its behavior (print)

In [104]: def min r(s):
print(min x: , 8)

if len(s) ==
return first(s)

else:
result = min(first(s), min r(rest(s)))
print('min r:', s," => ", result)

return result

In [105]: min_r([3,4,2,5,11])

min ¥ [3; 4, 2 5y I1]
min r: [4, 2, 5, 11]
min: e [Zy 5, 11]

min ¥ré [5, 11]

min r: [11]

min r: [5, 11] => 5

min re [2, 5, 11] => 2

min r: [4, 2, 5, 11] => 2
min r: [3, 4, 2, 5, 11] => 2

e What about sum?

 Don’t confuse print with return value
UCB CS88 Sp16 L4

Recursion with Higher Order Fun

def map (£, s):

else:

def square(x):
return x**2

>>> map (square, [2,4,6])
[4, 16, 36]

* Divide and conquer

2/22/16 UCB CS88 Sp16 L4 26

Trust ...

 The recursive “leap of faith” works as long as we
hit the base case eventually

UCB CS88 Sp16 L4

How much 7?77?77

 Time Is required to compute
sum of squares(n)? Linear

— Recursively? proportional to n

— lteratively ? cn for some ¢

e Space is required to compute
sum of squares(n)?
— Recursively?
— Iteratively ?

Count the frames...
 Recursive is linear, iterative is constant !
* And what about the order of evaluation ?

UCB CS88 Sp16 L4

Tail Recursion

e All the work happens on the way down the
recursion

 On the way back up, just return

def sum up squares(i, n, accum):
"nnsum the squares from i to n in incr. order"""
if i > n:

else:

>>> sum up squares(1l,3,0)
14

2/22/16 UCB CS88 Sp16 L4 29

def sum upper (i, accum):
if i > n:
return accum
else:

return sum upper(i+l, accum + i*ji)

return sum upper (1,0)

 What are the globals and locals in a call to
sum upper?
— Try python tutor

* Lexical (static) nesting of function def within def - vs
 Dynamic nesting of function call within call

UCB CS88 Sp16 L4

http://pythontutor.com/composingprograms.html#code=def+sum_of_squares(n):%0A++++def+sum_upper(i,+accum):%0A++++++++if+i+%3E+n:%0A++++++++++++return+accum%0A++++++++else:%0A++++++++++++return+sum_upper(i+1,+accum+++i*i)%0A++++++++%0A++++return+sum_upper(1,0)%0A++++%0Asum_of_squares(3)&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

Tree Recursion

 Break the problem into multiple smaller
sub-problems, and Solve them recursively

def split(x, s):
return [1 for i in s 1f i <= x], [1 for i in s if 1

def gsort(s):

"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)
lessor, more = split (pivot, rest(s))

return gsort (lessor) + [pivot] + gsort (more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
(L, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Sp16 L4

QuickSort Example

QEZ>3, 1, 4, 5, 4, 3, 2, 1, 17]
632)1, 3, 2, 1] @;Z)S, 4, 17]

@D 3, 2, 1] [] [4] [5,) 17]

[1] [3,) 2] 10| 0 | (7))

oo (12) o [4] 1] 11

[1] (][] [5, 17]

[2, 3] [4, 4, 5, 17]

[1, 1, 2, 3, 3]

[, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Sp16 L4

Tree Recursion with HOF

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together.""”

if not s:
return []
else:
pivot = first(s)
lessor, more = split fun(leq maker (pivot), rest(s))

return gsort (lessor) + [pivot] + gsort (more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
[, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UCB CS88 Sp16 L4

Computational Concepts Toolbox

Data type: values, literals, e |teration:

operations,
- e.g., int, float, string

Expressions, Call
expression

Variables
Assignment Statement

Sequences: tuple, list
— indexing

Data structures

Tuple assignment

Call Expressions

z, Function Definition

Statement
Conditional Statement

— data-driven (list
comprehension)

— control-driven (for
statement)

— while statement

e Higher Order Functions
— Functions as Values

— Functions with functions as
argument

— Assignment of function
values

e Recursion

UCB CS88 Sp16 L4

