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Computational Concepts Toolbox

e Data type: values, literals, e |teration:
operations, — data-driven (list
- e.g., int, float, string comprehension)
* Expressions, Call — control-driven (for
expression statement)
* Variables — while statement
* Assignment Statement e Higher Order Functions
 Sequences: tuple, list — Functions as Values
— indexing — Functions with functions as
e Data structures arg“_'me"t .
] — Assignment of function
 Tuple assignment values

e Call Expressions * Higher order function

z, Function Definition patterns
Statement — Map, Filter, Reduce

Conditional Statement * Function factories — create
and return functions
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Today: Recursion

re-cur-sion
Iri'’karZHan/ 4

noun MATHEMATICS LINGUISTICS

the repeated application of a recursive procedure or definition.

. arecursive definition.
plural noun: recursions

re-cur-sive
[ri' karsiv/ €

adjective

characterized by recurrence or repetition, in particular.

« MATHEMATICS LINGUISTICS
relating to or involving the repeated application of a rule, definition, or procedure to
successive results.

« COMPUTING

relating to or involving a program or routine of which a part requires the application
of the whole, so that its explicit interpretation requires in general many successive
executions.

* Recursive function calls itself, directly or indirectly
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Administrative Issues

e Midterm exam: wed Oct 3 6-8 pm
— Room based on last digit of SID
— 0-5LeConte 1 (60%)
— 6-9: VLSB 2040
— Alternative and accommodations during 5-9 by request

 Labs are to help you learn the materials, so
please make full use of them

e Materials will go through 10/1 Lecture

o Office hours start here after class and migrate
down to BIDS in 190 Doe Library
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Review: Higher Order Functions

 Functions that operate on functions
e A function

def odd (x) :
return x%2

>>> odd (3)
1

e A function that takes a function arg

def filter(fun, sS) :

return [x for x in s if fun (x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[ll 3’ 5’ 7]
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Review Higher Order Functions (cont)

e A function that returns (makes) a function

def leqg maker(c):
def leg(val) :
return val <= C
return leq

>>> leqg maker (3)
<function leq maker.<locals>.leqg at 0x1019d8c80>

>>> leqg maker (3) (4)

False
>>> filter(leq maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]

>>>
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One more example

e What does this function do?

def split fun(p, s):
mrr Returns <you f£ill this ins>."""
return [1 for 1 in s if p(i)], [1i for 1 in s if not p(1i)]

>>> split fun(leq maker(3), [0,1,2,3,4,5,6])
([o, 1, 2, 3], [4, 5, 6])
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Recall: Iteration

1. Initialize the “base” case of no iterations

2. Starting val
def sum of squares(n): arng vere

accum = 0 /2 3. Ending value

for i in range(l,n+l):

accum =_accum + 1*1i

return accuSEQQE;?\\\

4. New loop variable value

 Loops are a simple form of recursion — linear
recursion
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Remember

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

bonacci(0) == 1

-

where fibonacci(l) == £
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Recursion Key concepts — by example

SN

1. Test for simple “base” case 2. Solution in simple “base” case

i

def su
if

else:

of squares (H) :
n < 1l:
return 0

return sum of squares(n-1) #\n**z

I\ N

3. Assume recusive solution
to simpler problem

4. Transform soln of simpler
problem into full soln
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In words

e The sum of no numbers is zero

e The sum of 12 through n?is the
— sum of 12 through (n-1)>2
— plus n?

def sum of squares(n):
if n < 1:
return O
else:
return sum of squares(n-1) + n**2
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Why does it work

sum of squares(3)

# sum of squares(3) => sum of squares(2) + 3**2

# => sum of squares(l) + 2%*2 4+ 3*%*2

# => sum of squares(0) + 1**2 4 2%%2 4 3%*2
# => 0 + 1*%*%2 + 2%%2 4 3*%*%2 = 14
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How does it work?

 Each recursive call gets its own local variables
— Just like any other function call

« Computes its result (possibly using additional
calls)

— Just like any other function call

e Returns its result and returns control to its caller
— Just like any other function call

 The function that is called happens to be itself
— Called on a simpler problem
— Eventually bottoms out on the simple base case

 Reason about correctness “by induction”
— Solve a base case

— Assuming a solution to a smaller problem, extend it
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Questions

* In what order do we sum the squares ?
* How does this compare to iterative approach ?

def sum of squares(n):

accum = 0
for i in range(l,n+l):
accum = accum + 1i*i

return accum

def sum of squares(n):
if n< 1:
return 0
else:
return sum of squares(n-1) + n**2

def sum of squares(n):
if n < 1:
return 0
else:

return n**2 + sum of squares(n-1)
UCB CS88 Sp16 L4




Local variables

~_—
(X ]

def sum;of_squares{ﬁj
n squared = n**2
if n < 1:
return 0O
else:
return n squared|+| sum of squares(n-1)

e Each call has its own “frame” of local variables

 What about globals?
* Let’s see the environment diagrams

https://goo.gl/CiFaUJ
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Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2 /4)
. L sum_of_squares
if n ==
return 1
else:

return n_squared + sum_of_squares(n-1)

=) sum_of_squares(3)

Edit code

<<First <Back Step 2 of 17 Forward> Last >>

Python 3.3 Frames Objects
= 1 def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall]
n_squared = n**2
SF e sum_of_squares
return 1
else: fl: sum_of_squares [parent=Global]
return n_squared + sum_of_squares(n-1) n '3

sum_of_squares(3)

Edit code

<<First <Back Step 3 of 17 | Forward > Last >>

pythontutor.com
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http://pythontutor.com/visualize.html#code=def+sum_of_squares(n):%0D%0A++++n_squared+=+n**2%0D%0A++++if+n+%3C+1:%0D%0A++++++++return+0%0D%0A++++else:%0D%0A++++++++return+n_squared+++sum_of_squares(n-1)%0D%0Asum_of_squares(3)&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=false&textReferences=false&py=2&rawInputLstJSON=[]&curInstr=0

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code
0

<<First <Back Step 5o0f 17 | Forward> | Last>>

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared 9

Frames

Global frame

sum_of_squares

n 3

n_squared 9
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fl: sum_of_squares [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]

Objects

func sum_of_squares(n) [parent=Global]



Environments Example

Python 3.3

= def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

Python 3.3

def sum_of_squares(n):
n_squared = n**2
= if n == 1:
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0

<<First <Back Step 9 of 17 | Forward> | Last>>

Global frame

Global frame
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Frames

sum_of_squares

fl: sum_of_squares [parent=Global]

n |3

n_squared |9

f2: sum_of_squares [parent=Global]

n 2

Frames

sum_of_squares

fl: sum_of_squares [parent=Global]

n |3

n_squared |9

f2: sum_of_squares [parent=Global]

n 2

n_squared |4

Objects

func sum_of_squares(n) [parent=Globall

Objects

func sum_of_squares(n) [parent=Global]



Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
- return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code
0

<<First <Back Step 10 of 17 | Forward> | Last>>

Python 3.3

= def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

0

<< First <Back Step 11 of 17 | Forward > Last >>

that has just executed
- line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared |4

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Globall
n |3

n_squared |9

f2: sum_of_squares [parent=Globall
n 2

n_squared 4

f3: sum_of_squares [parent=Globall

n 1
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Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 13 of 17 | Forward> | Last>>

that has just executed
t line to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
= return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 14 of 17 | Forward > Last >>

that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n |1

n_squared 1

Frames Objects

Global frame func sum_of_squares(n) [parent=Globall]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1

n_squared |1



http://pythontutor.com/composingprograms.html#code=def+sum_of_squares(n):%0A++++n_squared+=+n**2%0A++++if+n+==+1:%0A++++++++return+1%0A++++else:%0A++++++++return+n_squared+++sum_of_squares(n-1)%0A++++++++%0Asum_of_squares(3)%0A&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=1

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 15 0of 17 | Forward> | Last>>

e that has just executed
xt line to execute

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n |1

n_squared |1

Return 1
value
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Objects

func sum_of_squares(n)

[parent=Globall



Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 16 of 17 | Forward > Last >>

 that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Globall]

sum_of_squares

fl: sum_of_squares [parent=Global]
n |3

n_squared |9

f2: sum_of_squares [parent=Globall]
n 2

n_squared 4

Return 5
value

f3: sum_of_squares [parent=Global]
n |1
n_squared |1

Return
value
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Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 17 of 17 | Forward> | Last>>

> that has just executed
<t line to execute

Frames

Global frame

sum_of_squares

fl: sum_of_squares [parent=Global]
n 3
n_squared |9

Return 14
value

f2: sum_of_squares [parent=Globall]
n 2
n_squared |4

Return 5
value

f3: sum_of_squares [parent=Globall]
n 1
n_squared |1

Return 1
value
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Objects

func sum_of_squares(n)

[parent=Global]



Another Example

indexing an element of a sequence

def first(s):
"""Return t st element in a sequence."""

return s[0]
def rest(s):
""n"Return all elements in a sequence after the first"""

return s[1l:]

Slicing a sequence of elements

def min r(s):
wrrnReturn minimum value in a sequence.”””

 Recursion over sequence length, rather than
number magnitude
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Visualize its behavior (print)

In [104]: def min r(s):
print( min x: , 8)

if len(s) ==
return first(s)

else:
result = min(first(s), min r(rest(s)))
print('min r:', s," => ", result)

return result

In [105]: min_r([3,4,2,5,11])

min ¥ [3; 4, 2 5y I1]
min r: [4, 2, 5, 11]
min: e [Zy 5, 11]

min ¥ré [5, 11]

min r: [11]

min r: [5, 11] => 5

min re [2, 5, 11] => 2

min r: [4, 2, 5, 11] => 2
min r: [3, 4, 2, 5, 11] => 2

e What about sum?

 Don’t confuse print with return value
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Recursion with Higher Order Fun

def map (£, s):

else:

def square(x):
return x**2

>>> map (square, [2,4,6])
[4, 16, 36]

* Divide and conquer
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Trust ...

 The recursive “leap of faith” works as long as we
hit the base case eventually
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How much 7?77?77

 Time Is required to compute
sum of squares(n)? Linear

— Recursively? proportional to n

— lteratively ? cn for some ¢

e Space is required to compute
sum of squares(n)?
— Recursively?
— Iteratively ?

Count the frames...
 Recursive is linear, iterative is constant !
* And what about the order of evaluation ?
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Tail Recursion

e All the work happens on the way down the
recursion

 On the way back up, just return

def sum up squares(i, n, accum):
"nnsum the squares from i to n in incr. order"""
if i > n:

else:

>>> sum up squares(1l,3,0)
14
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def sum upper (i, accum):
if i > n:
return accum
else:

return sum upper(i+l, accum + i*ji)

return sum upper (1,0)

 What are the globals and locals in a call to
sum upper?
— Try python tutor

* Lexical (static) nesting of function def within def - vs
 Dynamic nesting of function call within call
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http://pythontutor.com/composingprograms.html#code=def+sum_of_squares(n):%0A++++def+sum_upper(i,+accum):%0A++++++++if+i+%3E+n:%0A++++++++++++return+accum%0A++++++++else:%0A++++++++++++return+sum_upper(i+1,+accum+++i*i)%0A++++++++%0A++++return+sum_upper(1,0)%0A++++%0Asum_of_squares(3)&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

Tree Recursion

 Break the problem into multiple smaller
sub-problems, and Solve them recursively

def split(x, s):
return [1 for i in s 1f i <= x], [1 for i in s if 1

def gsort(s):

"""Sort a sequence - split it by the first element,
sort both parts and put them back together."””
if not s:
return []
else:
pivot = first(s)
lessor, more = split (pivot, rest(s))

return gsort (lessor) + [pivot] + gsort (more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
(L, 1, 2, 3, 3, 3, 4, 4, 5, 17]
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QuickSort Example

QEZ>3, 1, 4, 5, 4, 3, 2, 1, 17]
632)1, 3, 2, 1] @;Z)S, 4, 17]

@D 3, 2, 1] [] [4] [5,) 17]

[1] [3,) 2] 10| 0 | (7))

oo (12) o [4] 1] 11

[1] (][] [5, 17]

[2, 3] [4, 4, 5, 17]

[1, 1, 2, 3, 3]

[, 1, 2, 3, 3, 3, 4, 4, 5, 17]
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Tree Recursion with HOF

def gsort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together.""”

if not s:
return []
else:
pivot = first(s)
lessor, more = split fun(leq maker (pivot), rest(s))

return gsort (lessor) + [pivot] + gsort (more)

>>> gsort([3,3,1,4,5,4,3,2,1,17])
[, 1, 2, 3, 3, 3, 4, 4, 5, 17]
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Computational Concepts Toolbox

Data type: values, literals, e |teration:

operations,
- e.g., int, float, string

Expressions, Call
expression

Variables
Assignment Statement

Sequences: tuple, list
— indexing

Data structures

Tuple assignment

Call Expressions

z, Function Definition

Statement
Conditional Statement

— data-driven (list
comprehension)

— control-driven (for
statement)

— while statement

e Higher Order Functions
— Functions as Values

— Functions with functions as
argument

— Assignment of function
values

e Recursion
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