
Recursion

David E. Culler
 CS8 – Computational Structures in Data Science

http://inst.eecs.berkeley.edu/~cs88

Lecture 5
Sept 24, 2018

http://inst.eecs.berkeley.edu/~cs88

Computational Concepts Toolbox
• Data type: values, literals,

operations,
– e.g., int, float, string

• Expressions, Call
expression

• Variables
• Assignment Statement
• Sequences: tuple, list

– indexing
• Data structures
• Tuple assignment
• Call Expressions
• Function Definition

Statement
• Conditional Statement

• Iteration:
– data-driven (list

comprehension)
– control-driven (for

statement)
– while statement

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function

values
• Higher order function

patterns
– Map, Filter, Reduce

• Function factories – create
and return functions

2/22/16 UCB CS88 Sp16 L4 2

Today: Recursion

• Recursive function calls itself, directly or indirectly
2/22/16 UCB CS88 Sp16 L4 3

Administrative Issues
• Midterm exam: wed Oct 3 6-8 pm

– Room based on last digit of SID
– 0-5 LeConte 1 (60%)
– 6-9: VLSB 2040
– Alternative and accommodations during 5-9 by request

• Labs are to help you learn the materials, so
please make full use of them

• Materials will go through 10/1 Lecture

• Office hours start here after class and migrate
down to BIDS in 190 Doe Library

2/22/16 UCB CS88 Sp16 L4 4

Review: Higher Order Functions
• Functions that operate on functions
• A function

• A function that takes a function arg

2/22/16 UCB CS88 Sp16 L4 5

def odd(x):
 return x%2

>>> odd(3)
1

def filter(fun, s):
 return [x for x in s if fun(x)]

>>> filter(odd, [0,1,2,3,4,5,6,7])
[1, 3, 5, 7]

Why is this
not ‘odd’ ?

Review Higher Order Functions (cont)
• A function that returns (makes) a function

2/22/16 UCB CS88 Sp16 L4 6

def leq_maker(c):
 def leq(val):
 return val <= c
 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]
>>>

One more example
• What does this function do?

2/22/16 UCB CS88 Sp16 L4 7

def split_fun(p, s):
 ””” Returns <you fill this in>."""
 return [i for i in s if p(i)], [i for i in s if not p(i)]

>>> split_fun(leq_maker(3), [0,1,2,3,4,5,6])
([0, 1, 2, 3], [4, 5, 6])

Recall: Iteration

• Loops are a simple form of recursion – linear
recursion

2/22/16 UCB CS88 Sp16 L4 8

def sum_of_squares(n):
 accum = 0
 for i in range(1,n+1):
 accum = accum + i*i
 return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value

Remember
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

where fibonacci(1) == fibonacci(0) == 1

2/22/16 UCB CS88 Sp16 L4 9

Recursion Key concepts – by example

2/22/16 UCB CS88 Sp16 L4 10

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution
to simpler problem 4. Transform soln of simpler

problem into full soln

In words
• The sum of no numbers is zero
• The sum of 12 through n2 is the

– sum of 12 through (n-1)2

– plus n2

2/22/16 UCB CS88 Sp16 L4 11

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return sum_of_squares(n-1) + n**2

Why does it work

2/22/16 UCB CS88 Sp16 L4 12

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2
=> sum_of_squares(1) + 2**2 + 3**2
=> sum_of_squares(0) + 1**2 + 2**2 + 3**2
=> 0 + 1**2 + 2**2 + 3**2 = 14

How does it work?
• Each recursive call gets its own local variables

– Just like any other function call

• Computes its result (possibly using additional
calls)

– Just like any other function call

• Returns its result and returns control to its caller
– Just like any other function call

• The function that is called happens to be itself
– Called on a simpler problem
– Eventually bottoms out on the simple base case

• Reason about correctness “by induction”
– Solve a base case
– Assuming a solution to a smaller problem, extend it

2/22/16 UCB CS88 Sp16 L4 13

Questions
• In what order do we sum the squares ?
• How does this compare to iterative approach ?

2/22/16 UCB CS88 Sp16 L4 14

def sum_of_squares(n):
 accum = 0
 for i in range(1,n+1):
 accum = accum + i*i
 return accum

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return sum_of_squares(n-1) + n**2

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return n**2 + sum_of_squares(n-1)

Local variables

• Each call has its own “frame” of local variables
• What about globals?
• Let’s see the environment diagrams

2/22/16 UCB CS88 Sp16 L4 15

def sum_of_squares(n):
 n_squared = n**2
 if n < 1:
 return 0
 else:
 return n_squared + sum_of_squares(n-1)

https://goo.gl/CiFaUJ

https://goo.gl/CiFaUJ

Environments Example

2/22/16 UCB CS88 Sp16 L4 16

pythontutor.com

http://pythontutor.com/visualize.html#code=def+sum_of_squares(n):%0D%0A++++n_squared+=+n**2%0D%0A++++if+n+%3C+1:%0D%0A++++++++return+0%0D%0A++++else:%0D%0A++++++++return+n_squared+++sum_of_squares(n-1)%0D%0Asum_of_squares(3)&mode=display&origin=opt-frontend.js&cumulative=false&heapPrimitives=false&textReferences=false&py=2&rawInputLstJSON=[]&curInstr=0

Environments Example

2/22/16 UCB CS88 Sp16 L4 17

Environments Example

2/22/16 UCB CS88 Sp16 L4 18

Environments Example

2/22/16 UCB CS88 Sp16 L4 19

Environments Example

2/22/16 UCB CS88 Sp16 L4 20

permlink

http://pythontutor.com/composingprograms.html#code=def+sum_of_squares(n):%0A++++n_squared+=+n**2%0A++++if+n+==+1:%0A++++++++return+1%0A++++else:%0A++++++++return+n_squared+++sum_of_squares(n-1)%0A++++++++%0Asum_of_squares(3)%0A&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=1

Environments Example

2/22/16 UCB CS88 Sp16 L4 21

Environments Example

2/22/16 UCB CS88 Sp16 L4 22

Environments Example

2/22/16 UCB CS88 Sp16 L4 23

Another Example

• Recursion over sequence length, rather than
number magnitude

2/22/16 UCB CS88 Sp16 L4 24

def first(s):
 """Return the first element in a sequence."""
 return s[0]
def rest(s):
 """Return all elements in a sequence after the first"""
 return s[1:]

def min_r(s):
 “””Return minimum value in a sequence.”””
 if len(s) == 1:
 return first(s)
 else:
 return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

indexing an element of a sequence

Slicing a sequence of elements

Visualize its behavior (print)

• What about sum?
• Don’t confuse print with return value

2/22/16 UCB CS88 Sp16 L4 25

Recursion with Higher Order Fun

• Divide and conquer

2/22/16 UCB CS88 Sp16 L4 26

def map(f, s):
 if not s:
 return []
 else:
 return [f(first(s))] + map(f, rest(s))

def square(x):
 return x**2

>>> map(square, [2,4,6])
[4, 16, 36]

Base Case

Recursive Case

Trust …

• The recursive “leap of faith” works as long as we
hit the base case eventually

2/22/16 UCB CS88 Sp16 L4 27

How much ???
• Time is required to compute
sum_of_squares(n)?

– Recursively?
– Iteratively ?

• Space is required to compute
sum_of_squares(n)?

– Recursively?
– Iteratively ?

• Count the frames…
• Recursive is linear, iterative is constant !
• And what about the order of evaluation ?

2/22/16 UCB CS88 Sp16 L4 28

Linear
proportional to n
cn for some c

Tail Recursion
• All the work happens on the way down the

recursion
• On the way back up, just return

2/22/16 UCB CS88 Sp16 L4 29

def sum_up_squares(i, n, accum):
 """Sum the squares from i to n in incr. order"""
 if i > n:
 return accum
 else:
 return sum_up_squares(i+1, n, accum + i**2)

>>> sum_up_squares(1,3,0)
14

Base Case

Tail Recursive Case

Using HOF to preserve interface

• What are the globals and locals in a call to
sum_upper?

– Try python tutor

• Lexical (static) nesting of function def within def - vs
• Dynamic nesting of function call within call

2/22/16 UCB CS88 Sp16 L4 30

def sum_of_squares(n):
 def sum_upper(i, accum):

 if i > n:
 return accum
 else:
 return sum_upper(i+1, accum + i*i)

 return sum_upper(1,0)

http://pythontutor.com/composingprograms.html#code=def+sum_of_squares(n):%0A++++def+sum_upper(i,+accum):%0A++++++++if+i+%3E+n:%0A++++++++++++return+accum%0A++++++++else:%0A++++++++++++return+sum_upper(i+1,+accum+++i*i)%0A++++++++%0A++++return+sum_upper(1,0)%0A++++%0Asum_of_squares(3)&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstJSON=[]&curInstr=0

Tree Recursion
• Break the problem into multiple smaller

sub-problems, and Solve them recursively

2/22/16 UCB CS88 Sp16 L4 31

def split(x, s):
 return [i for i in s if i <= x], [i for i in s if i > x]

def qsort(s):
 """Sort a sequence - split it by the first element,
 sort both parts and put them back together."””
 if not s:
 return []
 else:
 pivot = first(s)
 lessor, more = split(pivot, rest(s))
 return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

QuickSort Example

2/22/16 UCB CS88 Sp16 L4 32

[3, 3, 1, 4, 5, 4, 3, 2, 1, 17]

[3, 1, 3, 2, 1] [4, 5, 4, 17]

[1, 3, 2, 1] []

[1] [3, 2]

[] []

[1]

[2] []

[] []

[2, 3]

[1, 1, 2, 3]

[1, 1, 2, 3, 3]

[4] [5, 17]

[] []

[4]

[] [17]

[] []

[5, 17]

[4, 4, 5, 17]

[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

Tree Recursion with HOF

2/22/16 UCB CS88 Sp16 L4 33

def qsort(s):
 """Sort a sequence - split it by the first element,
 sort both parts and put them back together.""”

 if not s:
 return []
 else:
 pivot = first(s)
 lessor, more = split_fun(leq_maker(pivot), rest(s))
 return qsort(lessor) + [pivot] + qsort(more)

>>> qsort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

Computational Concepts Toolbox
• Data type: values, literals,

operations,
– e.g., int, float, string

• Expressions, Call
expression

• Variables
• Assignment Statement
• Sequences: tuple, list

– indexing
• Data structures
• Tuple assignment
• Call Expressions
• Function Definition

Statement
• Conditional Statement

• Iteration:
– data-driven (list

comprehension)
– control-driven (for

statement)
– while statement

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function

values
• Recursion

2/22/16 UCB CS88 Sp16 L4 34

