
Abstract Data Types

David E. Culler
CS8 – Computational Structures in Data Science

http://inst.eecs.berkeley.edu/~cs88

Lecture 7
Oct 8, 2018

http://inst.eecs.berkeley.edu/~cs88

Computational Concepts Toolbox
• Data type: values, literals,

operations,
– e.g., int, float, string

• Expressions, Call
expression

• Variables
• Assignment Statement
• Sequences: tuple, list

– indexing

• Data structures
• Tuple assignment
• Call Expressions
• Function Definition

Statement
• Conditional Statement

• Iteration:
– data-driven (list

comprehension)
– control-driven (for

statement)
– while statement

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function

values

• Recursion
• Lambda - function valued

expressions

2/22/16 UCB CS88 Sp16 L4 2

Environments
and Closures

Administrative Issues
• Midterm went very well

• Project 1 is out
• Mid Term Survey Thanks

2/22/16 UCB CS88 Sp16 L4 3

Weekly “Pipeline”

2/22/16 UCB CS88 Sp16 L4 4

M Tu W Th F

Le
ct

ur
e

La
b

M Tu W Th F
Le

ct
ur

e

La
b

H
om

ew
or

k

La
b

w
or

k

Optional Exercises

Universality
• Everything that can be computed, can be

computed with what you know now.
• Well
• or poorly

2/22/16 UCB CS88 Sp16 L4 5

Today’s Lecture
• Administrative Issues
• Review: lambda
• New Concept: Abstract Data Type
• Example Illustration: key-value store

– Internal representation 1: list of pair
– Internal representation 2: pair of lists (including zip intro)

• A simple application over the KV interface
• New language construct: dict
• Key-Value store 3: dict
• Optional Exercises

2/22/16 UCB CS88 Sp16 L4 6

http://datahub.berkeley.edu/user-redirect/interact?account=data-8&repo=cs-
connector&branch=gh-pages&path=ADT

http://bit.ly/cs88-fa18-L07

http://bit.ly/cs88-fa18-L07

lambda
• Function expression

– “anonymous” function creation
– Expression, not a statement, no return or any other statement

2/22/16 UCB CS88 Sp16 L4 7

lambda <arg or arg_tuple> : <expression w/ args>

inc = lambda v : v + 1 def inc(v):
return v + 1

Lambda Examples

2/22/16 UCB CS88 Sp16 L4 8

>>> sort([1,2,3,4,5], lambda x: x)

[1, 2, 3, 4, 5]

>>> sort([1,2,3,4,5], lambda x: -x)
[5, 4, 3, 2, 1]

>>> sort([(2, "hi"), (1, "how"), (5, "goes"), (7, "I")],
lambda x:x[0])

[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'I')]

>>> sort([(2, "hi"), (1, "how"), (5, "goes"), (7, "I")],

lambda x:x[1])
[(7, 'I'), (5, 'goes'), (2, 'hi'), (1, 'how')]

>>> sort([(2,"hi"),(1,"how"),(5,"goes"),(7,"I")],
lambda x: len(x[1]))

[(7, 'I'), (2, 'hi'), (1, 'how'), (5, 'goes')]

Abstract Data Type

2/22/16 UCB CS88 Sp16 L4 9

A new Data Type

Internal Representation

External Representation

Constructors

Selectors

Operations

Operations Object

Implementation on that
Internal representation

interface

Examples Data Types You have seen
• Lists

– Constructors:
» list(…)

» [<exps>,…]

» [<exp> for <var> in <list> [if <exp>]]

– Selectors: <list> [<index or slice>]
– Operations: in, not in, +, *, len, min, max

» Mutable ones too (but not yet)

• Tuples
– Constructors:

» tuple(…)

» (<exps>,…)

– Selectors: <tuple> [<index or slice>]
– Operations: in, not in, +, *, len, min, max

2/22/16 UCB CS88 Sp16 L4 10

More “Built-in” Examples
• Lists
• Tuples
• Strings

– Constructors:
» str(…)

» “<chars>”, ‘<chars>’

– Selectors: <str> [<index or slice>]
– Operations: in, not in, +, *, len, min, max

• Range
– Constructors:

» range(<end>), range(<start>,<end>),
range(<start>,<end>,<step>)

– Selectors: <range> [<index or slice>]
– Operations: in, not in, len, min, max

2/22/16 UCB CS88 Sp16 L4 11

A New Abstract Data Type: Key-Value

• Collection of key-Value bindings
– Key : Value

• Many real-world examples
– Dictionary, Directory, Phone book, Course Schedule,

Facebook Friends, Movie listings, …

2/22/16 UCB CS88 Sp16 L4 12

Given some Key, What is the value associated with it?

Key-Value ADT
• Constructors

– kv_empty: create an empty KV
– kv_add: add a key:value binding to a KV
– kv_create: create a KV from a list of key,value tuples

• Selectors
– kv_items: list of (key,value) tuple in KV
– kv_keys: list of keys in KV
– kv_values: list of values in KV

• Operations
– kv_len: number of bindings
– kv_in: presence of a binding with a key
– kv_display: external representation of KV

2/22/16 UCB CS88 Sp16 L4 13

A little application

2/22/16 UCB CS88 Sp16 L4 14

from kv_pairs import *

phone_book_data = [
("Christine Strauch", "510-842-9235"),
("Frances Catal Buloan", "932-567-3241"),
("Jack Chow", "617-547-0923"),
("Joy De Rosario", "310-912-6483"),
("Casey Casem", "415-432-9292"),
("Lydia Lu", "707-341-1254")]

phone_book = kv_create(phone_book_data)

print("Jack Chows's Number: ", kv_get(phone_book, "Jack Chow"))

print("Area codes")
area_codes = list(map(lambda x:x[0:3], kv_values(phone_book)))
print(area_codes)

A Layered Design Process
• Build the application based entirely on the ADT

interface
– Operations, Constructors and Selectors

• Build the operations in ADT on Constructors and
Selectors
– Not the implementation representation

• Build the constructors and selectors on some
concrete representation

2/22/16 UCB CS88 Sp16 L4 15

Example 1
• KV represented as list of (key, value) pairs

2/22/16 UCB CS88 Sp16 L4 16

Example 2
• KV represented as pair of lists – (keys, values)

2/22/16 UCB CS88 Sp16 L4 17

zip
• Zip (like a zipper) together k lists to form a list of

k-tuples

2/22/16 UCB CS88 Sp16 L4 18

Dictionaries
• Lists, Tuples, Strings, Range
• Dictionaries

– Constructors:
» dict(<list of 2-tuples>)

» dict(<key>=<val>, ...) # like kwargs

» { <key exp>:<val exp>, … }

» { <key>:<val> for <iteration expression> }

>>> {x:y for x,y in zip(["a","b"],[1,2])}

{'a': 1, 'b': 2}

– Selectors: <dict> [<key>]
» <dict>.keys(), .items(), .values()

» <dict>.get(key [, default])

– Operations:
» Key in, not in, len, min, max

» <dict>[<key>] = <val>

2/22/16 UCB CS88 Sp16 L4 19

Dictionary Example

2/22/16 UCB CS88 Sp16 L4 20

Beware

• Built-in data type dict relies on mutation
– Clobbers the object, rather than “functional” – creating a new

one

• Throws an errors of key is not present
• We will learn about mutation shortly

2/22/16 UCB CS88 Sp16 L4 21

Example 3
• KV represented as dict

2/22/16 UCB CS88 Sp16 L4 22

Building Apps over KV ADT

• Construct a table of the friend list for each
person

2/22/16 UCB CS88 Sp16 L4 23

friend_data = [
("Christine Strauch", "Jack Chow"),
("Christine Strauch", "Lydia Lu"),
("Jack Chow", "Christine Strauch"),
("Casey Casem", "Christine Strauch"),
("Casey Casem", "Jack Chow"),
("Casey Casem", "Frances Catal Buloan"),
("Casey Casem", "Joy De Rosario"),
("Casey Casem", "Casey Casem"),
("Frances Catal Buloan", "Jack Chow"),
("Jack Chow", "Frances Catal Buloan"),
("Joy De Rosario", "Lydia Lu"),
("Joy De Lydia", "Jack Chow")
]

Example: make_friends

2/22/16 UCB CS88 Sp16 L4 24

def make_friends(friendships):
friends = kv_empty()
for (der, dee) in friendships:

if not kv_in(friends, der):
friends = kv_add(friends, der, [dee])

else:
der_friends = kv_get(friends, der)
friends = kv_add(kv_delete(friends, der),

der, [dee] + der_friends)
return friends

C.O.R.E concepts

2/22/16 UCB CS88 Sp16 L4 25

Compute

Operations

Representation

Evaluation

Perform useful computations
treating objects abstractly as
whole values and operating on
them.

Provide operations on the
abstract components that allow
ease of use – independent of
concrete representation.

Constructors and selectors that
provide an abstract interface to
a concrete representation

Execution on a computing
machine

Ab
st

ra
ct

 D
at

a
Ty

pe

Abstraction Barrier

Creating an Abtract Data Type
• Constructors & Selectors
• Operations

– Express the behavior of objects, invariants, etc
– Implemented (abstractly) in terms of Constructors and

Selectors for the object

• Representation
– Implement the structure of the object

• An abstraction barrier violation occurs when a
part of the program that can use the higher level
functions uses lower level ones instead
– At either layer of abstraction

• Abstraction barriers make programs easier to get
right, maintain, and modify
– Few changes when representation changes

2/22/16 UCB CS88 Sp16 L4 26

Exercises
• Read 2.2, reread 2.3, esp 2.3.6
• Modify all three KV ADTs to avoid ever adding

duplicate keys
• Create and ADT for a shopping cart containing a

collection of products and their order count
– cart() – creates an empty cart
– cart_add(ct, product) – returns a new cart that includes

an additional order of product, or the first one
– cart_print(ct) – prints the contents of the cart
– cart_products(ct) – returns the list of products ordered
– cart_items(ct) – returns list of (product, count)
– cart_remove(ct, product) - returns a new cart with

product removed

• Create an 1D array abstraction (like np.array)
using lists as representation

2/22/16 UCB CS88 Sp16 L4 27

