
1

Generators and Iterators

David E. Culler
CS8 – Computational Structures in Data Science

http://inst.eecs.berkeley.edu/~cs88

Lecture 11
November 5, 2018

http://bit.ly/cs88-fa18-L11

Computational Concepts Toolbox
• Data type: values, literals,

operations,

• Expressions, Call
expression

• Variables
• Assignment Statement
• Sequences: tuple, list
• Dictionaries
• Data structures
• Tuple assignment
• Function Definition

Statement
• Conditional Statement
• Iteration: list comp, for,

while
• Lambda function expr.

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function values

• Higher order function patterns
– Map, Filter, Reduce

• Function factories – create and
return functions

• Recursion
• Abstract Data Types
• Mutation

• Class
– Object Oriented Programming
– Inheritance

• Exceptions
10/29/18 UCB CS88 Sp18 L10 2

Administrative Issues
• Project 2 “Wheel” is out

– Part I due 11/10

• There will be no Project 3
• No lecture 11/12 due to holiday

– There will be lab Friday 11/16

10/29/18 UCB CS88 Sp18 L10 3

Today:
• Review Exceptions
• Sequences vs Iterables
• Using iterators without generating all the data
• Generator concept

– Generating an iterator from iteration with yield

• Magic methods
– next
– Iter

• Iterators – the iter protocol
• Getitem protocol
• Is an object iterable?
• Lazy evaluation with iterators

10/29/18 UCB CS88 Sp18 L10 4

Summary of last week

• Approach creation of a class as a design
problem
– Meaningful behavior => methods [& attributes]
– ADT methodology
– What’s private and hidden? vs What’s public?

• Design for inheritance
– Clean general case as foundation for specialized subclasses

• Use it to streamline development

• Anticipate exceptional cases and unforeseen
problems
– try … catch
– raise / assert

10/29/18 UCB CS88 Sp18 L10 5

Key concepts to take forward

• Classes embody and allow enforcement of ADT
methodology

• Class definition
• Class namespace
• Methods
• Instance attributes (fields)
• Class attributes
• Inheritance
• Superclass reference

10/29/18 UCB CS88 Sp18 L10 6

http://inst.eecs.berkeley.edu/~cs88
http://bit.ly/cs88-fa18-L11

2

Exception (read 3.3)

• Mechanism in a programming language to
declare and respond to “exceptional conditions”
– enable non-local cntinuations of control

• Often used to handle error conditions
– Unhandled exceptions will cause python to halt and print a

stack trace
– You already saw a non-error exception – end of iterator

• Exceptions can be handled by the program
instead
– assert, try, except, raise statements

• Exceptions are objects!
– They have classes with constructors

10/29/18 UCB CS88 Sp18 L10 7

Handling Errors – try / except

• Wrap your code in try – except statements

• Execution rule
– <try suite> is executed first
– If during this an exception is raised and not handled otherwise
– And if the exception inherits from <exception class>
– Then <except suite> is executed with <name> bound to the

exception
• Control jumps to the except suite of the most

recent try that handles the exception
10/29/18 UCB CS88 Sp18 L10 8

try:
<try suite>

except <exception class> as <name>:
<except suite>

... # continue here if <try suite> succeeds w/o exception

Types of exceptions
• TypeError -- A function was passed the wrong

number/type of argument
• NameError -- A name wasn't found
• KeyError -- A key wasn't found in a dictionary
• RuntimeError -- Catch-all for troubles during

interpretation
• . . .

10/29/18 UCB CS88 Sp18 L10 9

Exceptions are Classes

10/29/18 UCB CS88 Sp18 L10 10

class NoiseyException(Exception):
def __init__(self, stuff):

print("Bad stuff happened", stuff)

try:
return fun(x)

except:
raise NoiseyException((fun, x))

Iterators - Notebook

10/29/18 UCB CS88 Sp18 L10 11

http://bit.ly/cs88-fa18-L11

Iterable - an object you can iterate over
• iterable: An object capable of yielding its members

one at a time.
• iterator: An object representing a stream of data.
• We have worked with many iterables as if they were

sequences

10/29/18 UCB CS88 Sp18 L10 12

http://bit.ly/cs88-fa18-L11

3

Functions that return iterables
• map
• range
• zip

• These objects are not sequences.
• If we want to see all of the elements at once, we

need to explicitly call list() or tuple() on them

10/29/18 UCB CS88 Sp18 L10 13

Define objects that behave like
sequences

10/29/18 UCB CS88 Sp18 L10 14

Generators: turning iteration into an
interable
• Generator functions use iteration (for loops, while

loops) and the yield keyword
• Generator functions have no return statement, but

they don’t return None
• They implicitly return a generator object
• Generator objects are just iterators

10/29/18 UCB CS88 Sp18 L10 15

def squares(n):
for i in range(n):

yield (i*i)

Nest iteration

10/29/18 UCB CS88 Sp18 L10 16

def all_pairs(x):
for item1 in x:

for item2 in x:
yield(item1, item2)

Next element in generator iterable
• Iterables work because they have some "magic

methods" on them. We saw magic methods when
we learned about classes,

• e.g., __init__, __repr__ and __str__.
• The first one we see for iterables is __next__

• iter() – transforms a sequence into an iterator

10/29/18 UCB CS88 Sp18 L10 17

Iterators – iter protocol
• In order to be iterable, a class must implement

the iter protocol
• The iterator objects themselves are required to

support the following two methods, which together
form the iterator protocol:

– __iter__() : Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.

– This method returns an iterator object, Iterator can be self
– __next__() : Return the next item from the container. If there are

no further items, raise the StopIteration exception.

• Classes get to define how they are iterated over by
defining these methods

10/29/18 UCB CS88 Sp18 L10 18

4

Getitem protocol
• Another way an object can behave like a sequence

is indexing: Using square brackets “[]” to access
specific items in an object.

• Defined by special method: __getitem__(self, i)
– Method returns the item at a given index

10/29/18 UCB CS88 Sp18 L10 19

Determining if an object is iterable
• from collections.abc import Iterable
• isinstance([1,2,3], Iterable)

• This is more general than checking for any list of
particular type, e.g., list, tuple, string...

10/29/18 UCB CS88 Sp18 L10 20

Computational Concepts Toolbox
• Data type: values, literals,

operations,

• Expressions, Call
expression

• Variables
• Assignment Statement,

Tuple assignment
• Sequences: tuple, list
• Dictionaries
• Function Definition

Statement
• Conditional Statement
• Iteration: list comp, for,

while
• Lambda function expr.

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function values

• Higher order function patterns
– Map, Filter, Reduce

• Function factories – create and
return functions

• Recursion
• Abstract Data Types
• Mutation

• Class & Inheritance
• Exceptions
• Iterators & Generators

10/29/18 UCB CS88 Sp18 L10 21

