
Computational Structures in Data
Science

Lecture 7
Abstract Data Types

UC Berkeley EECS
Lecturer Michael Ball

http:cs88.orgOctober 21, 2019

Computational Concepts Toolbox
• Data type: values, literals,

operations,
– e.g., int, float, string

• Expressions, Call
expression

• Variables
• Assignment Statement
• Sequences: tuple, list

– indexing
• Data structures
• Tuple assignment
• Call Expressions
• Function Definition

Statement
• Conditional Statement

• Iteration:
– data-driven (list

comprehension)
– control-driven (for

statement)
– while statement

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function

values
• Recursion
• Lambda - function valued

expressions

10/21/19 UCB CS88 Fa19 L7 2

Announcements

• Midterm Tonight!
• Monday 10/21 7-9pm, 155 Dwinelle
• 1 page, double-sided handwritten cheat sheet

3

Today’s Lecture
• Abstract Data Types

– More use of functions!
– Value in documentation and clarity

• New Python Data Types
– Dictionaries, a really useful too!

10/21/19 UCB CS88 Fa19 L7 4

Why ADTs?

• “Self-Documenting”
– contact_name(contact)

» Vs contact[0]
– “0” may seem clear now, but what about in a week? 3

months?
• Change your implementation

– Maybe today it’s just a Python List
– Tomorrow: It could be a file on your computer; a database

in web

5

Abstract Data Type

10/21/19 UCB CS88 Fa19 L7 6

A new Data
Type

Internal Representation

External Representation

Constructors

Selectors

Operations

Operations Object

Implementation on that
Internal representation

Interface
Abstraction Barrier!

Creating Abstractions

• Compound values combine other values
together
– date: a year, a month, and a day
– geographic position: latitude and longitude

• • Data abstraction lets us manipulate compound
values as units

• Isolate two parts of any program that uses data:
– How data are represented (as parts)
– How data are manipulated (as units)

• Data abstraction: A methodology by which
functions enforce an abstraction barrier
between representation and use

7

Reminder: Lists
• Lists

– Constructors:
» list(…)
» [<exps>,…]
» [<exp> for <var> in <list> [if <exp>]]

– Selectors: <list> [<index or slice>]
– Operations: in, not in, +, *, len, min, max

» Mutable ones too (but not yet)

10/21/19 UCB CS88 Fa19 L7 8

A Small ADT

9

def point(x, y): # constructor
return [x, y]

x = lambda point: point[0] # selector
y = lambda point: point[1]

def distance(p1, p2): # Operator
return ((x(p2) - x(p1)**2 + (y(p2) -

y(p1))**2) ** 0.5

origin = point(0, 0)
my_house = point(5, 5)
campus = point(25, 25)
distance_to_campus = distance(my_house, campus)

Creating an Abtract Data Type
• Constructors & Selectors
• Operations

– Express the behavior of objects, invariants, etc
– Implemented (abstractly) in terms of Constructors and

Selectors for the object
• Representation

– Implement the structure of the object

• An abstraction barrier violation occurs when a
part of the program that can use the higher level
functions uses lower level ones instead

– At either layer of abstraction

• Abstraction barriers make programs easier to get
right, maintain, and modify

– Few changes when representation changes

10/21/19 UCB CS88 Fa19 L7 10

Clicker ?: Changing Representations?

Assuming we update our selectors, what are valid
representations for our point(x, y) ADT?

Currently point(1, 2) is represented as [1, 2]

• A) [y, x] # [2, 1]
• B) “X: ” + str(x) + “ Y: ” + str(y)

“X: 1 Y: 2”
• C) str(x) + “ ” + str(y) # “1 2”
• D) All of the above
• E) None of the above

11

An Abstract Data Type: Key-Value Pair

• Collection of key-Value bindings
– Key : Value

• Many real-world examples
– Dictionary, Directory, Phone book, Course Schedule,

Facebook Friends, Movie listings, …

10/21/19 UCB CS88 Fa19 L7 12

Given some Key, What is the value associated with it?

Key-Value ADT
• Constructors

– kv_empty: create an empty KV
– kv_add: add a key:value binding to a KV
– kv_create: create a KV from a list of key,value tuples

• Selectors
– kv_items: list of (key,value) tuple in KV
– kv_keys: list of keys in KV
– kv_values: list of values in KV

• Operations
– kv_len: number of bindings
– kv_in: presence of a binding with a key
– kv_display: external representation of KV

10/21/19 UCB CS88 Fa19 L7 13

A little application

10/21/19 UCB CS88 Fa19 14

phone_book_data = [
("Christine Strauch", "510-842-9235"),
("Frances Catal Buloan", "932-567-3241"),
("Jack Chow", "617-547-0923"),
("Joy De Rosario", "310-912-6483"),
("Casey Casem", "415-432-9292"),
("Lydia Lu", "707-341-1254")

]

phone_book = pb_create(phone_book_data)

print("Jack Chows's Number: ", pb_get(phone_book, "Jack Chow"))

print("Area codes")
area_codes = list(map(lambda x:x[0:3], pb_numbers(phone_book)))
print(area_codes)

A Layered Design Process
• Build the application based entirely on the ADT

interface
– Operations, Constructors and Selectors

• Build the operations in ADT on Constructors and
Selectors

– Not the implementation representation
• Build the constructors and selectors on some

concrete representation

10/21/19 UCB CS88 Fa19 L7 15

Example 1
• KV represented as list of (key, value) pairs

10/21/19 UCB CS88 Fa19 L7 16

Dictionaries
• Lists, Tuples, Strings, Range
• Dictionaries

– Constructors:
» dict(<list of 2-tuples>)
» dict(<key>=<val>, ...) # like kwargs
» { <key exp>:<val exp>, … }
» { <key>:<val> for <iteration expression> }

– Selectors: <dict> [<key>]
» <dict>.keys(), .items(), .values()
» <dict>.get(key [, default])

– Operations:
» Key in, not in, len, min, max
» <dict>[<key>] = <val>

10/21/19 UCB CS88 Fa19 L7 17

Dictionary Example

10/21/19 UCB CS88 Fa19 L7 18

Clicker ?: Dictionaries

• What is the result of the final expression?

my_dict = { ‘course’: ’CS 88’, semester = ‘Fall’ }
my_dict[‘semester’] = ’Spring’

my_dict[‘semester’]

A) ‘Fall’
B) ‘Spring’
C) Error

19

Limitations

• Dictionaries are unordered collections of key-
value pairs

• Dictionary keys have two restrictions:
– A key of a dictionary cannot be a list or a dictionary (or any

mutable type)
– Two keys cannot be equal; There can be at most one value for a

given key

This first restriction is tied to Python's underlying
implementation of dictionaries
The second restriction is part of the dictionary
abstraction

If you want to associate multiple values with a key,
store them all in a sequence value

20

Beware

• Built-in data type dict relies on mutation
– Clobbers the object, rather than “functional” – creating a new

one

• Throws an errors of key is not present
• We will learn about mutation shortly

10/21/19 UCB CS88 Fa19 L7 21

Example 3
• KV represented as dict

10/21/19 UCB CS88 Fa19 L7 22

C.O.R.E concepts

10/21/19 UCB CS88 Fa19 L7 23

Compute

Operations

Representation

Evaluation

Perform useful computations
treating objects abstractly as
whole values and operating on
them.

Provide operations on the
abstract components that allow
ease of use – independent of
concrete representation.

Constructors and selectors that
provide an abstract interface to
a concrete representation

Execution on a computing
machine

Ab
st

ra
ct

 D
at

a
Ty

pe

Abstraction Barrier

Building Apps over KV ADT

• Construct a table of the friend list for each
person

10/21/19 UCB CS88 Fa19 L7 24

friend_data = [
("Christine Strauch", "Jack Chow"),
("Christine Strauch", "Lydia Lu"),
("Jack Chow", "Christine Strauch"),
("Casey Casem", "Christine Strauch"),
("Casey Casem", "Jack Chow"),
("Casey Casem", "Frances Catal Buloan"),
("Casey Casem", "Joy De Rosario"),
("Casey Casem", "Casey Casem"),
("Frances Catal Buloan", "Jack Chow"),
("Jack Chow", "Frances Catal Buloan"),
("Joy De Rosario", "Lydia Lu"),
("Joy De Lydia", "Jack Chow")
]

