
11/25/19

1

Computational Structures in Data
Science

Lecture #12:
Exceptions and Iterators

UC Berkeley EECS
Lecturer

Michael Ball

http://inst.eecs.berkeley.edu/~cs88November 25, 2019

1

Computational Concepts Toolbox
• Data type: values, literals,

operations,
• Expressions, Call

expression
• Variables
• Assignment Statement,

Tuple assignment
• Sequences: tuple, list
• Dictionaries
• Function Definition

Statement
• Conditional Statement
• Iteration: list comp, for,

while
• Lambda function expr.

• Higher Order Functions
– Functions as Values
– Functions with functions as

argument
– Assignment of function values

• Higher order function patterns
– Map, Filter, Reduce

• Function factories – create and
return functions

• Recursion
• Abstract Data Types
• Mutation
• Class & Inheritance
• Exceptions
• Iterators & Generators

11/25/19 UCB CS88 Fa19 L12 2

2

Today:
• Exceptions
• Sequences vs Iterables
• Using iterators without generating all the data
• Magic methods

– next
– Iter

• Iterators – the iter protocol
• Getitem protocol
• Is an object iterable?
• Lazy evaluation with iterators

311/25/19 UCB CS88 Fa19 L12

3

Exception (read 3.3)
• Mechanism in a programming language to

declare and respond to “exceptional conditions”
– enable non-local cntinuations of control

• Often used to handle error conditions
– Unhandled exceptions will cause python to halt and print a

stack trace
– You already saw a non-error exception – end of iterator

• Exceptions can be handled by the program
instead
– assert, try, except, raise statements

• Exceptions are objects!
– They have classes with constructors

411/25/19 UCB CS88 Fa19 L12

4

Handling Errors
• Function receives arguments of improper type?
• Resource, e.g., file, is not available
• Network connection is lost or times out?

10/29/18 UCB CS88 Sp18 L10 5

5

Example exceptions

• Unhandled, “thrown” back to the top level
interpreter

• Or halt the Python program
6

>>> 3/0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero
>>> str.lower(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: descriptor 'lower' requires a 'str' object
but received a 'int'
>>> ""[2]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range
>>>

notebook

11/25/19 UCB CS88 Fa19 L12

6

http://inst.eecs.berkeley.edu/~cs88

11/25/19

2

Functions
• Q: What is a function supposed to do?
• A: One thing well
• Q: What should it do when it is passed

arguments that don’t make sense?

7

>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
???

>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog’)

????

11/25/19 UCB CS88 Fa19 L12

7

Exceptional exit from functions

• Function doesn’t “return” but instead execution
is thrown out of the function

8

>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in divides

ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in get

KeyError: 'dog'
>>>

11/25/19 UCB CS88 Fa19 L12

8

Continue out of multiple calls deep

• “Stack” unwinds until exception is handled or
top

911/25/19 UCB CS88 Fa19 L12

9

Types of exceptions
• TypeError -- A function was passed the wrong

number/type of argument
• NameError -- A name wasn't found
• KeyError -- A key wasn't found in a dictionary
• RuntimeError -- Catch-all for troubles during

interpretation
• . . .

1011/25/19 UCB CS88 Fa19 L12

10

Demo

10/29/18 UCB CS88 Sp18 L10 11

11

Flow of control stops at the exception
• And is ‘thrown back’ to wherever it is caught

1211/25/19 UCB CS88 Fa19 L12

12

11/25/19

3

Assert Statements
• Allow you to make assertions about

assumptions that your code relies on
– Use them liberally!
– Incoming data is dirty till you’ve washed it

• Raise an exception of type AssertionError
• Ignored in optimize flag: python3 –O …

– Governed by bool __debug__

13

assert <assertion expression>, <string for failed>

def divides(x, y):
assert x != 0, ”Denominator must be non-zero”
return y%x == 0

11/25/19 UCB CS88 Fa19 L12

13

Handling Errors – try / except
• Wrap your code in try – except statements

• Execution rule
– <try suite> is executed first
– If during this an exception is raised and not handled otherwise
– And if the exception inherits from <exception class>
– Then <except suite> is executed with <name> bound to the

exception
• Control jumps to the except suite of the most

recent try that handles the exception

14

try:
<try suite>

except <exception class> as <name>:
<except suite>

... # continue here if <try suite> succeeds w/o exception

11/25/19 UCB CS88 Fa19 L12

14

Demo

1511/25/19 UCB CS88 Fa19 L12

15

Raise statement
• Exception are raised with a raise statement\

raise <exception>

• <expression> must evaluate to a subclass of
BaseException or an instance of one

• Exceptions are constructed like any other object
TypeError(‘Bad argument’)

1611/25/19 UCB CS88 Fa19 L12

16

Exceptions

What does Python Display?

>>> my_list = [‘We’, ‘Beat’,
‘$tanford’]
>>> my_list[3]

A) “GO BEARS!”
B) “$tanford”
C) None
D) IndexError

Solution:
A) An object is an instance of a class

11/25/19 UCB CS88 Fa19 L12

17

Exceptions are Classes

18

class NoiseyException(Exception):
def __init__(self, stuff):

print("Bad stuff happened", stuff)

try:
return fun(x)

except:
raise NoiseyException((fun, x))

11/25/19 UCB CS88 Fa19 L12

18

11/25/19

4

Demo

1911/25/19 UCB CS88 Fa19 L12

19

Mind Refresher 2

A setter method…

A) constructs an object
B) changes the internal state of
an object or class
C) is required by Python to
access variables
D) All of the above

Solution:
B) Changes the internal state of an object or class by
allowing access to a private variable.

11/25/19 UCB CS88 Fa19 L12

20

Types of exceptions
• TypeError -- A function was passed the wrong

number/type of argument
• NameError -- A name wasn't found
• KeyError -- A key wasn't found in a dictionary
• RuntimeError -- Catch-all for troubles during

interpretation
• . . .

2111/25/19 UCB CS88 Fa19 L12

21

Mind Refresher 3

Exceptions…

A) allow to handle errors non-locally
B) are objects
C) cannot happen within a catch
block
D) B, C
E) A, B

Solution:
B, C) Exceptions are objects and they can occur any
time.

11/25/19 UCB CS88 Fa19 L12

22

Iterable - an object you can iterate over
• iterable: An object capable of yielding its members

one at a time.
• iterator: An object representing a stream of data.
• We have worked with many iterables as if they were

sequences
• A Sequence is an iteratable that knows its length

and can get a specific item (e.g. a List)

2311/25/19 UCB CS88 Fa19 L12

23

Functions that return iterables
• map
• range
• zip

• These objects are not sequences.
• If we want to see all the elements at once, we need

to explicitly call list() or tuple() on them

2411/25/19 UCB CS88 Fa19 L12

24

11/25/19

5

Next element in generator iterable
• Iterables work because they have some "magic

methods" on them. We saw magic methods when
we learned about classes,

• e.g., __init__, __repr__ and __str__.
• The first one we see for iterables is __next__

• iter() – transforms a sequence into an iterator

2511/25/19 UCB CS88 Fa19 L12

25

Iterators – iter protocol
• In order to be iterable, a class must implement

the iter protocol
• The iterator objects themselves are required to

support the following two methods, which together
form the iterator protocol:

– __iter__() : Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.

– This method returns an iterator object, Iterator can be self
– __next__() : Return the next item from the container. If there are

no further items, raise the StopIteration exception.
• Classes get to define how they are iterated over by

defining these methods

2611/25/19 UCB CS88 Fa19 L12

26

Getitem protocol
• Another way an object can behave like a sequence

is indexing: Using square brackets “[]” to access
specific items in an object.

• Defined by special method: __getitem__(self, i)
– Method returns the item at a given index

2711/25/19 UCB CS88 Fa19 L12

27

Demo

2811/25/19 UCB CS88 Fa19 L12

28

What would Python Display?

>>> my_list = [‘We, ‘Beat’, ‘$tanford’]
>>> my_iter = iter(my_list)
>>> next(my_iter)
>>> next(my_iter)
>>> next(my_iter)
>>> next(my_iter)

A) “$tanford”
B) None
C) IndexError
D) StopIterationError

Solution: D) iterators stop with a StopIterationError.

11/25/19 UCB CS88 Fa19 L12

29

Determining if an object is iterable
• from collections.abc import Iterable
• isinstance([1,2,3], Iterable)

• This is more general than checking for any list of
particular type, e.g., list, tuple, string...

3011/25/19 UCB CS88 Fa19 L12

30

