
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Tree Recursion

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Announcements

• Midterm Grading: Out later this week
– We are taking bugs into account that happened during the test.
– We’ll have a 1 week window for regrades after scores are released.

• Clobber Policy:
– You will be able to replace you midterm score with your final exam

score if it’s higher. You don’t need to do anything to take advantage
of this.

• Maps
– First project will be out Wednesday! You have all you need to know,

but Wednesday’s lecture may be helpful.
– You’ll have a couple weeks to do it.

• CA Online Voter Registration Deadline is 10/19
– https://registertovote.ca.gov

2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Write Recursive functions with multiple recursive calls
• Understand Recursive Fibonacci
• Understand the quicksort algorithm

3

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Tree Recursion:
Fibonacci

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Tree Recursion

• Recursion which involves multiple recursive calls to solve a problem.
• Drawing out a function usually looks like an “inverted” tree.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example I

List all items on your hard disk

• Files
• Folders contain

– Files
– Folders

def process_directory(directory):
for item in directory:

if is_file(item):
process_file(item)

else:
process_directory(item)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Fibonacci Sequence

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
where fibonacci(1) == 1 and fibonacci(0) == 0

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Tree Recursion:
Quicksort

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Quicksort

• A fairly simple to sorting algorithm
• Goal: Sort the list by breaking it into partially sorted parts

–Pick a “pivot”, a starting item to split the list
–Remove the pivot from your list
– Split the list into 2 parts, a smaller part and a bigger part
–Then recursively sort the smaller and bigger parts
–Combine everything together: the smaller list, the pivot, then the bigger list

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

QuickSort Example

[3, 3, 1, 4, 5, 4, 3, 2, 1, 17]

[3, 1, 3, 2, 1] [4, 5, 4, 17]

[1, 3, 2, 1] []

[1] [3, 2]

[] []

[1]

[2] []

[] []

[2, 3]

[1, 1, 2, 3]

[1, 1, 2, 3, 3]

[4] [5, 17]

[] []

[4]

[] [17]

[] []

[5, 17]

[4, 4, 5, 17]

[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Tree Recursion

• Break the problem into multiple smaller sub-problems, and Solve them
recursively

11

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def quicksort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."""
if not s:

return []
else:

pivot = s[0]
smaller, bigger = split(pivot, s[1:])
return quicksort(smaller) + [pivot] + quicksort(bigger)

>>> quicksort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

