
HIGHER ORDER FUNCTIONS 3
COMPUTER SCIENCE 88

September 15, 2021

1 Higher Order Functions

A higher order function (HOF) is a function that manipulates other functions by taking
in functions as arguments, returning a function, or both.

1.1 Functions as Arguments

One way a higher order function can exploit other functions is by taking functions as
input. Consider this higher order function called negate.
def negate(f, x):

return -f(x)

negate takes in a function f and a number x. It doesn’t care what exactly f does, as long
as f takes in a number and returns a number. Its job is simple: call f on x and return the
negation of that value.

1.2 Questions

1. Here are some possible functions that can be passed through as f.
def square(n):

return n * n

def double(n):
return 2 * n

What will the following Python statements output?
>>> negate(square, 5)



DISCUSSION 3: HIGHER ORDER FUNCTIONS Page 2

Solution:
-25

>>> negate(double, -19)

Solution:
38

>>> negate(double, negate(square, -4))

Solution:
32

2. Implement a function keep ints, which takes in a function cond and a number n,
and only prints a number from 1 to n if calling cond on that number returns True:
def keep_ints(cond, n):

"""Print out all integers 1..i..n where cond(i) is true

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep_ints(is_even, 5)
2
4
"""

Solution:
i = 1
while i <= n:

if cond(i):
print(i)

i += 1

CS 88 Fall 2021



DISCUSSION 3: HIGHER ORDER FUNCTIONS Page 3
1.3 Functions as Return Values

Often, we will need to write a function that returns another function. One way to do this
is to define a function inside of a function:
def outer(x):

def inner(y):
...

return inner

The return value of outer is the function inner. This is a case of a function returning
a function. In this example, inner is defined inside of outer. Although this is a com-
mon pattern, we can also define inner outside of outer and still use the same return
statement.
def inner(y):

...
def outer(x):

return inner

1.4 Questions

1. Use this definition of outer to fill in what Python would print when the following
lines are evaluated.
def outer(n):

def inner(m):
return n - m

return inner
>>> outer(61)

Solution:
<function outer.inner ...>

>>> f = outer(10)
>>> f(4)

Solution:
6

>>> outer(5)(4)

Solution:
1

CS 88 Fall 2021



DISCUSSION 3: HIGHER ORDER FUNCTIONS Page 4
2. Implement a function keep ints like before, but now it takes in a number n and

returns a function that has one parameter cond. The returned function prints out all
numbers from 1..i..n where calling cond(i) returns True.
def keep_ints(n):

"""Returns a function which takes one parameter cond and
prints out all integers 1..i..n where calling cond(i)
returns True.

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep_ints(5)(is_even)
2
4
"""

Solution:
def do_keep(cond):

i = 1
while i <= n:

if cond(i):
print(i)

i += 1
return do_keep

CS 88 Fall 2021



DISCUSSION 3: HIGHER ORDER FUNCTIONS Page 5

2 Environment Diagrams

1. Draw the environment diagram for evaluating the following code
def f(x):

return y + x
y = 10
f(8)

Solution: Solution: https://goo.gl/rZnzaM

2. Draw the environment diagram for evaluating the following code
def dessef(a, b):

c = a + b
b = b + 1

b = 6
dessef(b, 4)

Solution: Solution: https://goo.gl/4m3NRD

3. Draw the environment diagram for evaluating the following code
def foo(x, y):

foo = bar
return foo(bar(x, x), y)

def bar(z, x):
return z + y

y = 5
foo(1, 2)

Solution: Solution: https://goo.gl/7Kcx6n

CS 88 Fall 2021


