
RECURSION 6
COMPUTER SCIENCE 88

October 6, 2021

1 Recursion

A recursive function is a function that is defined in terms of itself. A good example is the
factorial function. Consider this example:
def factorial(n):

if n == 0 or n == 1:
return 1

else:
return n * factorial(n - 1)

Although we haven’t finished defining factorial, we are still able to call it since the
function body is not evaluated until the function is called. Note that when n is 0 or
1, we just return 1. This is known as the base case, and it prevents the function from
infinitely recursing. Now we can compute factorial(2) in terms of factorial(1),
and factorial(3) in terms of factorial(2), and factorial(4) – well, you get the
idea.

There are three common steps in a recursive definition:

1. Figure out your base case: The base case is usually the simplest input possible to
the function. For example, factorial(0) is 1 by definition. You can also think of a
base case as a stopping condition for the recursion. If you can’t figure this out right
away, move on to the recursive case and try to figure out the point at which we can’t
reduce the problem any further.

2. Make a recursive call with a simpler argument: Simplify your problem, and assume
that a recursive call for this new problem will simply work. This is called the “leap
of faith”. For factorial, we reduce the problem by calling factorial(n-1).



DISCUSSION 6: RECURSION Page 2
3. Use your recursive call to solve the full problem: Remember that we are assuming

the recursive call works. With the result of the recursive call, how can you solve the
original problem you were asked? For factorial, we just multiply (n− 1)! by n.

Note: One way to go understand recursion is to separate out two things: “internal correctness” and not running forever (known
as “halting”).

A recursive function is internally correct if it is always does the right thing assuming that every recursive call does the right thing.
For example, the same factorial function from above but with no base case is internally correct, but does not halt.

A recursive function is correct if and only if it is both internally correct and halts; but you can check each property separately. The

“recursive leap of faith” is temporarily placing yourself in a mindset where you only check internal correctness.

1.1 Questions

1. Write a recursive function that takes in an integer n and prints out a countdown from
n to 1.

First, think about a base case for the countdown function. What is the simplest input
the problem could be given?

After you’ve thought of a base case, think about a recursive call with a smaller argu-
ment that approches the base case. What happens if you call countdown(n - 1)?

Then, put the base case and the recursive call together, and think about where a print
statement would be needed.
def countdown(n):

"""
>>> countdown(3)
3
2
1
"""

CS 88 Fall 2021



DISCUSSION 6: RECURSION Page 3
2. How can we change countdown to count up instead without modifying a lot of the

code?

3. Write a procedure expt(base, power), which implements the exponent function.
For example, expt(3, 2) returns 9, and expt(2, 3) returns 8. Assume power is
always a non-negative integer. Use recursion, not pow!
def expt(base, power):

CS 88 Fall 2021



DISCUSSION 6: RECURSION Page 4
4. Write a recursive function that takes a number n and returns the sum of every other

digit, starting from the rightmost digit. Assume n is non-negative.

You might find the operators // and % useful.
def sum_every_other_digit(n):

"""
>>> sum_every_other_digit(7)
7
>>> sum_every_other_digit(30)
0
>>> sum_every_other_digit(228)
10
>>> sum_every_other_digit(123456)
12
>>> sum_every_other_digit(1234567) # 1 + 3 + 5 + 7
16
"""

CS 88 Fall 2021



DISCUSSION 6: RECURSION Page 5
5. Remember map? Given a list of elements and a function, we want to return a list with

the function applied to each element. Let’s write it recursively!
def map(fn, seq):

(Extra Challenge: Try to write a mutation version! i.e. Don’t return a list and apply
map by altering the original list.)

CS 88 Fall 2021



DISCUSSION 6: RECURSION Page 6
6. Below is the iterative version of is prime, which returns True if positive integer n

is a prime number and False otherwise:
def is_prime(n):

if n == 1:
return False

k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

Implement the recursive is prime function. Do not use a while loop, use recursion.
As a reminder, an integer is considered prime if it has exactly two unique factors: 1
and itself.
def is_prime(n):

"""
>>> is_prime(7)
True
>>> is_prime(10)
False
>>> is_prime(1)
False
"""
def prime_helper(____________________):

if ________________________:

________________________

elif ________________________:

________________________

else:

________________________

return __________________________

CS 88 Fall 2021


