
OBJECT ORIENTED PROGRAMMING 8
COMPUTER SCIENCE 88

October 20, 2021

1 Object Oriented Programming Introduction

This week, you were introduced to the programming paradigm known as Object-Oriented
Programming. If you’ve programmed in a language like Java or C++, this concept should
already be familiar to you.

Object-oriented programming (OOP) is heavily based on the idea of data abstraction.
Think of objects as how you would an object in real life.

For our example, let’s think of your laptop. First of all, it must have gotten its design
from somewhere and that blueprint is called a class. The laptop itself is an instance
of that class. If your friend has the same laptop as you, those laptops are just different
instances of the same class.

Your laptop performs many actions, e.g. turning on, displaying text, etc. Those are called
methods. It also has properties, e.g. screen resolution, how much memory it has, that
scratch mark you hope no one else sees. Those are called attributes. If it’s an attribute
that’s the same for all instances, it’s called a class attribute. So, if you were wondering
how many instances of your laptop exists, that would be a class attribute because no mat-
ter which instance got asked that, it would be the same. If you were wondering how many
scratches your laptop has, that’s an instance attribute because that number depends on
each instance.

When discussing objects and classes, it is helpful to distinguish between the definition
of a class and the instantiation of a class, or an object. The instantiation is referred to as
an “object”, whereas the definition is the “class”. Following our example, OurClass is a
class, while new bar is an instantiation of that class, also referred to as an object.



DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 2
So, that’s the vocabulary of OOP. (Yes, people say that – it’s quite fun! As a bonus warm-
up, you should say it too.)

To define a method, we write it almost exactly the same way as when we define functions.
However, the first argument we always include is self, which we use to refer to the
instance we used to call the method.
class OurClass(ParentClass):

def method(self, arg):
# body goes here

When defining a class, we use the following syntax:
class OurClass(ParentClass):

"""Class definition with methods and class attributes"""

where OurClass is the name of the new class and ParentClass is the name of the class
it inherits from. (We’ll talk more about inheritance later). When the ParentClass field
is missing (i.e. just class OurClass:), classes inherit from Python’s built-in object
class.

Finally, to use a class or instance’s attributes, we use ”dot notation”, which is aptly named
for the use of the magic dot. The dot asks the class for the value of the attribute. So, if
we have an attribute, bar, of a class or instance, foo, we access it by saying: “foo.bar”
which says ”Almighty foo class, what is the value of the attribute bar?”

Typically, attributes are defined in the init function of a class:
class OurClass(ParentClass):

bar = "Fruit Bar" # class attribute
def __init__(self, bar_name):

self.bar = bar_name # instance attribute
def method(self, arg):

# body goes here

Once an object is constructed, you can also access the attribute by using dot notation
outside of the class definition:
>>> new_bar = OurClass('Crazy Bar')
>>> new_bar.bar
'Crazy Bar'

CS 88 Fall 2021



DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 3

2 Questions

2.1 ADTs and OOP

1. What is the relationship between a class and an ADT?

2. What is the definition of a Class? What is the definition of an Instance?

3. What is a Class Attribute? What is an Instance Attribute?

4. What Would Python Display?
class Foo():

x = 'bam'
def __init__(self, x):

self.x = x
def baz(self):

return self.x

class Bar(Foo):
x = 'boom'
def __init__(self, x):

Foo.__init__(self, 'er' + x)
def baz(self):

return Bar.x + Foo.baz(self)
foo = Foo('boo')
Foo.x

foo.x

foo.baz()

Foo.baz()

Foo.baz(foo)

CS 88 Fall 2021



DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 4
bar = Bar('ang')
Bar.x

bar.x

bar.baz()

CS 88 Fall 2021



DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 5
2.2 OOP Questions

As a starting example, consider the classes Skittle and Bag, which will be used to
represent a single piece of Skittles candy and a bag of Skittles respectively.
class Skittle:

"""A Skittle object has a color to describe it."""
def __init__(self, color):

self.color = color

class Bag:
"""A Bag is a collection of Skittles. All bags share the
number of Bags ever made (sold) and each bag keeps track

of
its Skittles in a list.
"""
number_sold = 0

def __init__(self):
self.skittles = []
Bag.number_sold += 1

def tag_line(self):
"""Print the Skittles tag line."""
print("Taste the rainbow!")

def print_bag(self):
print([s.color for s in self.skittles])

def take_skittle(self):
"""Take the first skittle in the bag (from the front

of
the skittles list).
"""
return self.skittles.pop(0)

def add_skittle(self, s):
"""Add a skittle to the bag."""
self.skittles.append(s)

In this example, we have the attribute number sold, which is a class attribute. Also,
you see this strange method called init . That is called when you make a new
instance of the class. So, if you write a = Bag(), that makes a new instance of the

CS 88 Fall 2021



DISCUSSION 8: OBJECT ORIENTED PROGRAMMING Page 6
Bag class (calling init to do so) and then returns self, which you can think of as
a dictionary that holds all of the attributes of the object.

To make a new class attribute, you use the name of the class with dot notation:
Bag.new var = 10 makes a new class attribute new var in the Bag class and as-
signs it the value of 10. To make a new instance attribute, you use the name of the
instance attribute: a.new var2 = 10. Attribute lookup works similarly to environ-
ment diagrams. You look to see if some instance attribute has that name. If it doesn’t,
then you look up the name in the class attributes.

5. What does Python print for each of the following:
>>> johns_bag = Bag()
>>> johns_bag.print_bag()

>>> for color in ['blue', 'red', 'green', 'red']:
... johns_bag.add_skittle(Skittle(color))
>>> johns_bag.print_bag()

>>> s = johns_bag.take_skittle()
>>> print(s.color)

>>> johns_bag.number_sold

>>> Bag.number_sold

>>> soumyas_bag = Bag()
>>> soumyas_bag.print_bag()

>>> johns_bag.print_bag()

>>> Bag.number_sold

>>> soumyas_bag.number_sold

6. Write a new method for the Bag class called take all, which takes all the Skittles
in the current bag and prints the color of the each Skittle taken from the bag.

def take_all(self):

CS 88 Fall 2021


