
INHERITANCE AND ASYMPTOTICS 9
COMPUTER SCIENCE 88

November 3, 2021

1 Inheritance

Python classes can implement a useful abstraction technique known as inheritance. To
illustrate this concept, consider the following Dog and Cat classes.
class Dog():

def __init__(self, name, owner):
self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat():
def __init__(self, name, owner, lives=9):

self.is_alive = True
self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")

Notice that because dogs and cats share a lot of similar qualities, there is a lot of repeated
code! To avoid redefining attributes and methods for similar classes, we can write a single



DISCUSSION 9: INHERITANCE AND ASYMPTOTICS Page 2
superclass from which the similar classes inherit. For example, we can write a class called
Pet and redefine Dog as a subclass of Pet:
class Pet():

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where one
class is a more specific version of the other, e.g. a dog is a pet. Because Dog inherits from
Pet, we didn’t have to redefine init or eat. However, since we want Dog to talk
in a way that is unique to dogs, we did override the talk method.

CS 88 Fall 2021



DISCUSSION 9: INHERITANCE AND ASYMPTOTICS Page 3

2 Questions

1. Assume these commands are entered in order. What would Python output?
>>> class Foo:
... def __init__(self, a):
... self.a = a
... def garply(self):
... return self.baz(self.a)
>>> class Bar(Foo):
... a = 1
... def baz(self, val):
... return val
>>> f = Foo(4)
>>> b = Bar(3)
>>> f.a

>>> b.a

>>> f.garply()

>>> b.garply()

>>> b.a = 9
>>> b.garply()

>>> f.baz = lambda val: val * val
>>> f.garply()

CS 88 Fall 2021



DISCUSSION 9: INHERITANCE AND ASYMPTOTICS Page 4
2. Below is a skeleton for the Cat class, which inherits from the Pet class. To com-

plete the implementation, override the init and talk methods and add a new
lose_life method.

Hint: You can call the init method of Pet to set a cat’s name and owner.
class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):
""" Print out a cat's greeting.

>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!
"""

def lose_life(self):
"""Decrements a cat's life by 1. When lives reaches

zero, 'is_alive'
becomes False.
"""

CS 88 Fall 2021



DISCUSSION 9: INHERITANCE AND ASYMPTOTICS Page 5

3 Asymptotics

When we talk about the efficiency of a function, we are often interested in the following:
as the size of the input grows, how does the runtime of the function change? And what
do we mean by “runtime”?

• square(1) requires one primitive operation: * (multiplication). square(100)
also requires one. No matter what input n we pass into square, it always takes
one operation.

input function call return value number of operations
1 square(1) 1 · 1 1
2 square(2) 2 · 2 1
...

...
...

...
100 square(100) 100 · 100 1

...
...

...
...

n square(n) n · n 1

• factorial(1) requires one multiplication, but factorial(100) requires 100 mul-
tiplications. As we increase the input size of n, the runtime (number of operations)
increases linearly proportional to the input.

input function call return value number of operations
1 factorial(1) 1 · 1 1
2 factorial(2) 2 · 1 · 1 2
...

...
...

...
100 factorial(100) 100 · 99 · · · 1 · 1 100

...
...

...
...

n factorial(n) n · (n− 1) · · · 1 · 1 n

Here are some general guidelines for finding the order of growth for the runtime of a
function:

• If the function is recursive or iterative, you can subdivide the problem as seen above:

– Count the number of recursive calls/iterations that will be made in terms of
input size n.

– Find how much work is done per recursive call or iteration in terms of input size
n.

The answer is usually the product of the above two, but be sure to pay attention to
control flow!

• If the function calls helper functions that are not constant-time, you need to take the
runtime of the helper functions into consideration.

CS 88 Fall 2021



DISCUSSION 9: INHERITANCE AND ASYMPTOTICS Page 6
• We can ignore constant factors. For example, Θ(1000000n) = Θ(n).

• We can also ignore lower-order terms. For example, Θ(n3 + n2 + 4n + 399) = Θ(n3).
This is because the n3 term dominates as n gets larger.

CS 88 Fall 2021



DISCUSSION 9: INHERITANCE AND ASYMPTOTICS Page 7

4 Questions

1. What is the runtime of the following function?
def one(n):

if 1 == 1:
return None

return n

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

2. What is the runtime of the following function?
def two(n):

for i in range(n):
print(n)

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

3. What is the runtime of the following function?
def three(n):

while n > 0:
n = n // 2

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

4. What is the runtime of the following function?
def four(n):

for i in range(n):
for j in range(i):

print(str(i), str(j))

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

5. What is the runtime of the following function?
def five(n):

if n <= 0:
return 1

return five(n - 1) + five(n - 2)

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

6. What is the runtime of the following function?
def five(n):

if n <= 0:
return 1

return five(n//2) + five(n//2)

a. Theta(1) b. Theta(log n) c. Theta(n) d. Theta(nˆ2) e. Theta(2ˆn)

CS 88 Fall 2021


