
ITERATORS AND GENERATORS 11
COMPUTER SCIENCE 88

November 17, 2021

1 Iterator

An iterator is an object that tracks the position in a sequence of values in order to provide
sequential access. It returns elements one at a time and is only good for one pass through
the sequence. The following is an example of a class that implements Python’s iterator
interface using two special methods __next__ and __iter__. This iterator calculates
all of the natural numbers one-by-one, starting from zero:

class Naturals():
def __init__(self):

self.current = 0

def __next__(self):
result = self.current
self.current += 1
return result

def __iter__(self):
return self

An iterable is a data type which contains a collection of values which can be processed
one by one sequentially. Some examples of iterables we’ve seen include lists, tuples,
strings, and dictionaries. In general, any object that can be iterated over in a for loop
can be considered an iterable.

While an iterable contains values that can be iterated over, we need another type of object
called an iterator to actually retrieve values contained in an iterable. Calling the iter
function on an iterable will create an iterator over that iterable. Each iterator keeps track

DISCUSSION 11: ITERATORS AND GENERATORS Page 2
of its position within the iterable. Calling the next function on an iterator will give the
current value in the iterable and move the iterator’s position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the re-
lationship between a book and a bookmark - an iterable contains the data that is being
iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next on
that iterable will result in a StopIteration exception. In order to be able to access the
values in the iterable a second time, you would have to create a second iterator.

We have already been using iterables to go through the elements of a sequence. This
happens all the time in for loops. For example:
>>> for n in [1, 2, 3]:
... print(n)
...
1
2
3

This works because the for loop implicitly creates an iterator using the iter method.
Python then repeatedly calls next repeatedly on the iterator, until it raises StopIteration.
In other words, the loop above is (basically) equivalent to:

iterator = iter([1, 2, 3])
try:

while True:
n = next(iterator)
print(n)

except StopIteration:
pass

1.1 Questions

1. What would Python display? If a StopIteration Exception occurs, write StopIteration,
and if another error occurs, write Error.
>>> lst = [6, 1, "a"]
>>> next(lst)

Solution:
Error

>>> lst_iter = iter(lst)
>>> next(lst_iter)

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 3

Solution:
6

>>> next(lst_iter)

Solution:
1

>>> next(iter(lst))

Solution:
6

>>> [x for x in lst_iter]

Solution:
["a"]

2. Create an iterator that generates the sequence of Fibonacci numbers.
class FibIterator(object):

def __init__(self):

Solution:
self.current = 0
self.next = 1

def __next__(self):

Solution:
res = self.current
self.current, self.next = self.next, self.current +

self.next
return res

def __iter__(self):
return self

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 4
3. Implement an iterator class called Filter. The init method for Filter takes an

iterable and a one-argument function fn that either returns True or False. The Filter
iterator only contains elements of the iterable for which the predicate function fn
returns True. Do not use a generator in your solution.
class Filter :

"""
>>> is_even = lambda x: x % 2 == 0
>>> for elem in Filter(range(5) , is_even):
... print(elem)
0
2
4
>>> all_odd = (2*y-1 for y in range (5))
>>> for elem in Filter(all_odd, is_even):
... print(elem) # No elements are even !
>>> s = Filter(naturals(), is_even)
>>> next(s)
2
>>> next(s)
4
"""
def __init__(self, iterable, fn):

Solution:
self.iterator = iter(iterable)
self.fn = fn

def __iter__(self):

Solution:
return self

def __next__(self):

Solution:
candidate = next(self.iterator)
while not self.fn(candidate):

candidate = next(self.iterator)
return candidate

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 5

2 Generator

Generators can be used to create iterators as well. Generators use a yield statement
instead of return. When a generator function is called, the body of the function is not
evaluated. Instead, an iterator is created and is the return value of the function call. The
elements of this iterator are the yielded values of the function. For extra fun, yield
from lets generators yield multiple values at once.

>>> square = lambda x: x*x
>>> def many_squares(s):
... for x in s:
... yield square(x)
... yield from [square(x) for x in s]
... yield from map(square, s)
...
>>> list(many_squares([1, 2, 3]))
[1, 4, 9, 1, 4, 9, 1, 4, 9]

We can make our own classes iterable using the __iter__ method, which returns an it-
erator object. Because generators are technically iterators, you can implement __iter__
methods using them. For example:
class Naturals():

def __iter__(self):
current = 0
while True:

yield current
current += 1

Naturals’s __iter__method now returns a generator object. The behavior of Naturals
is almost the same as before:
>>> nats = Naturals()
>>> nats_iterator1 = iter(nats)
>>> next(nats_iterator1)
0
>>> next(nats_iterator1)
1
>>> nats_iterator2 = iter(nats)
>>> next(nats_iterator2)
0

In this example, we can iterate over the same object more than once by calling iter multi-
ple times. Note that nats is an iterable object and the nats_iterator’s are generators.
The yield statement is similar to a return statement. However, while a return state-

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 6
ment closes the current frame after the function exits, a yield statement causes the frame
to be saved until the next time next is called, which allows the generator to automatically
keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues until
the next yield statement or the end of the function. A generator function can have
multiple yield statements.

Including a yield statement in a function automatically tells Python that this function
will create a generator. When we call the function, it returns a generator object instead of
executing the body. When the generator’s next method is called, the body is executed
until the next yield statement is executed.

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 7
2.1 Questions

1. What would Python display? If a StopIteration Exception occurs, write StopIteration,
or if another error occurs, write Error.
>>> def weird_gen(x):
... if x % 2 == 0:
... yield x * 2
... else:
... yield x
... yield from weird_gen(x - 1)
>>> next(weird_gen(2))

Solution:
4

>>> list(weird_gen(3))

Solution:
[3, 4]

>>> def greeter(x):
... while x % 2 != 0:
... print('hello!')
... yield x
... print('goodbye!')
>>> greeter(5)

Solution:
<generator object greeter at ...>

>>> gen = greeter(5)
>>> next(gen)

Solution:
hello!
5

>>> next(gen)

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 8

Solution:
goodbye!
hello!
5

CS 88 Fall 2021

DISCUSSION 11: ITERATORS AND GENERATORS Page 9
2. Implement a generator function called filter(iterable, fn) that only yields

elements of iterable for which fn returns True.
def filter(iterable, fn):

"""
>>> is_even = lambda x: x % 2 == 0
>>> list(filter(range(5), is_even))
[0 , 2 , 4]
>>> all_odd = (2*y-1 for y in range (5))
>>> list(filter(all_odd, is_even))
[]
>>> s = filter(naturals(), is_even)
>>> next(s)
2
>>> next(s)
4
"""

Solution:
for elem in iterable:

if fn(elem):
yield elem

CS 88 Fall 2021

