
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Lecture 2:
Abstraction and Functions

UC Berkeley | Computer Science 88 | Michael Ball

Computing In The News

• How game-makers are catering to disabled players
Ars Technica, 8/29/2021

2

According to a recent study, more than 2 percent
of the US population can't play video games due
to poor accessibility options. This same study
suggests more than 9 percent are unable to enjoy
the traditional gaming experience because of
visual, cognitive, or physical impairments.
Additional research suggests 20 percent of the
casual gaming audience is disabled in some
fashion.

The Microsoft Adaptive Controller is
easily the most prominent example of
adaptive controls. With 19 different 3.5
mm jacks, it can be mounted for
players who cannot hold or manipulate
standard controllers.

https://arstechnica.com/gaming/2021/08/how-game-makers-are-catering-to-disabled-players/
https://arstechnica.com/gaming/2021/08/how-game-makers-are-catering-to-disabled-players/
https://link.springer.com/article/10.1007/s10209-010-0189-5
https://arstechnica.com/gaming/2008/06/popcap-games-disabled-gamers-20-percent-of-casual-audience/
https://arstechnica.com/gaming/2018/05/xbox-adaptive-controller-a-bold-answer-to-the-tricky-world-of-accessible-gaming/

UC Berkeley | Computer Science 88 | Michael Ball

Announcements
• We are working to expand the course. Details TBD.

– Usually ~30-40 people get off the waitlist.
– This year it keeps growing. L

• Join the EECS 101 and DATA 001 Ed Discussions!
– https://eecs.link/join-ed
– https://eecs.link/data-ed

• Hopefully not needed! Please, report any concerns about class / campus
climate to the department. You are welcome here!

• https://eecs.link/climate

3

https://eecs.link/join-ed
https://eecs.link/data-ed
https://eecs.link/climate

UC Berkeley | Computer Science 88 | Michael Ball

Links
• Q&A Thread: https://go.c88c.org/qa2
• Self-Check: https://go.c88c.org/2

4

https://go.c88c.org/qa2
https://go.c88c.org/2

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Abstraction

UC Berkeley | Computer Science 88 | Michael Ball

• Detail removal
“The act of leaving out of consideration
one or more properties of a complex
object so as to attend to others.”

• Generalization
“The process of formulating general
concepts by abstracting common
properties of instances”

• Technical terms: Compression,
Quantization, Clustering,
Unsupervized Learning

Abstraction

Henri Matisse “Naked Blue IV”

6

UC Berkeley | Computer Science 88 | Michael Ball

Experiment

7

UC Berkeley | Computer Science 88 | Michael Ball

Where are you from?

Possible Answers:
• Planet Earth
• Europe
• California
• The Bay Area
• San Mateo
• 1947 Center Street, Berkeley,

CA
• 37.8693° N, 122.2696°W

All correct but different levels of abstraction!

UC Berkeley | Computer Science 88 | Michael Ball

Abstraction gone wrong!

9

UC Berkeley | Computer Science 88 | Michael Ball

• You’ll want to look at only the
interesting data, leave out the
details, zoom in/out…

• Abstraction is the idea that
you focus on the essence, the
cleanest way to map the
messy real world to one you
can build

• Experts are often brought in to
know what to remove and
what to keep!

Detail Removal (in Data Science)

The London Underground 1928 Map &
the 1933 map by Harry Beck.

UC Berkeley | Computer Science 88 | Michael Ball

• Examples:
– Math Functions (e.g., sin x)
– Hiring contractors
– Application Programming Interfaces

(APIs)
– Technology (e.g., cars)

• Amazing things are built when
these layer
– And the abstraction layers are

getting deeper by the day!

The Power of Abstraction, Everywhere!

Abstraction Barrier (Interface)
(the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is
actually built, which is done according to
the interface, specification, or contract.

We only need to worry about the
interface, or specification, or contract

NOT how (or by whom) it’s built

Above the abstraction line

UC Berkeley | Computer Science 88 | Michael Ball

• Abstraction is not universal without loss of information
(mathematically provable). This means, in the end, the complexity
can only be “moved around”

• Abstraction makes us
forget how things actually
work and can therefore
hide bias. Example: AI and
hiring decisions.

• Abstractions can formalize a design or pattern. When something
doesn't follow that pattern–perhaps a new use case emerges–it
can be a burden to adapt.

Abstraction: Pitfalls

UC Berkeley | Computer Science 88 | Michael Ball

Data or Code? Abstraction!

22

Compiler or Interpreter
Here: Python

Human-readable code
(programming language)

Machine-executable
instructions (byte code)

UC Berkeley | Computer Science 88 | Michael Ball

Code or GUI: More Abstraction!

• Big Idea: Layers of Abstraction
– The GUI look and feel is built out of files, directories, system code, etc.

23

UC Berkeley | Computer Science 88 | Michael Ball

Review:
• Abstraction:

– Detail Removal or Generalizations

• Code:
– Is an abstraction!

Computer Science is the study of abstraction

24

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Python: Simple Statements

UC Berkeley | Computer Science 88 | Michael Ball

Learning Objectives
• Evaluate Python Expressions
• Call Functions in Python
• Assign data to Variables

26

UC Berkeley | Computer Science 88 | Michael Ball

Let’s talk Python
• Expression 3.1 * 2.6

• Call expression max(0, x)

• Variables my_name

• Assignment Statement my_name = <expression>

• Define Statement: def function_name(<arguments>):
• Control Statements: if …

for …
while …

• Comments # Text after the # is ignored.

27

UC Berkeley | Computer Science 88 | Michael Ball

Boolean Expressions
• Booleans are Yes/No values.

– In Python: True and False

• >, <, ==, !=, >=, <=, and, or
– Note the the "double equals"

• These expressions all return only True or False.
• 3 < 5 # returns True

– You can write 3 < 5 == True – but this is redundant.

• We'll keep practicing over time

28

UC Berkeley | Computer Science 88 | Michael Ball

Live Coding Demo
• Open Terminal on the Mac
• Type python3

– We are now in the "interpreter" and can type code.

• Python runs each line of code as we type it.
– After each line, we see a result. This happens only in the interpreter.

• It's a very useful calculator.
• We can also run files!
• python3 -i 02-Functions.py

– -i : This means open the interpreter after running the file. It's optional

• python3 ok …
– This runs the file "ok" which is included with each lab / homework.

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Python: Control Flow

UC Berkeley | Computer Science 88 | Michael Ball

Conditional Statement
• Do some statements, conditional on a predicate expression

• Example:

31

if <predicate>:
<true statements>

else:
<false statements>

if (temperature>37.2):
print(“fever!”)

else:
print(“no fever”)

UC Berkeley | Computer Science 88 | Michael Ball

Live Coding Demo

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Python: Function Definitions

UC Berkeley | Computer Science 88 | Michael Ball

Learning Objectives
• Create your own functions.
• Use if and else to control the flow of code.

34

UC Berkeley | Computer Science 88 | Michael Ball

Defining Functions

• Abstracts an expression or set of statements to apply to lots of instances
of the problem

• A function should do one thing well

35

expression

def <function name> (<argument list>) :

return

UC Berkeley | Computer Science 88 | Michael Ball

Functions: Example

36

UC Berkeley | Computer Science 88 | Michael Ball

Functions: Example

37

UC Berkeley | Computer Science 88 | Michael Ball

How to Write a Good Function
• Give a descriptive name

– Function names should be lowercase. If necessary, separate words by underscores
to improve readability. Names are extremely suggestive!

• Chose meaningful parameter names
– Again, names are extremely suggestive.

• Write the docstring to explain what it does
– What does the function return? What are corner cases for parameters?

• Write doctest to show what it should do
– Before you write the implementation.

38

Python Style Guide "PEP 8"

https://www.python.org/dev/peps/pep-0008

UC Berkeley | Computer Science 88 | Michael Ball

Live Coding Demo

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Functions and Environments

UC Berkeley | Computer Science 88 | Michael Ball

Functions: Calling and Returning Results

41

Python Tutor

def max(x, y):
return x if x > y else y

x = 3
y = 4 + max(17, x + 6) * 0.1
z = x / y

http://pythontutor.com/composingprograms.html

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball

Iteration With While Loops

UC Berkeley | Computer Science 88 | Michael Ball

Learning Objectives
• Write functions that call functions
• Learn How to use while loops.

43

UC Berkeley | Computer Science 88 | Michael Ball

while Statement – Iteration Control
• Repeat a block of statements until a predicate expression is satisfied

44

<initialization statements>

while <predicate expression>:
<body statements>

<rest of the program>

