
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Lambdas
Environments
Dictionaries

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Computing In the News: Dark Patterns

FTC Report Shows Rise in Sophisticated Dark Patterns Designed to Trick and
Trap Consumers 9/15/2022 (See also darkpatterns.org)
Tactics Include Disguised Ads, Difficult-to-Cancel Subscriptions, Buried Terms,
and Tricks to Obtain Data
The Federal Trade Commission released a report today showing how companies
are increasingly using sophisticated design practices known as “dark patterns”
that can trick or manipulate consumers into buying products or services or giving
up their privacy. The dark pattern tactics detailed in the report include disguising
ads to look like independent content, making it difficult for consumers to cancel
subscriptions or charges, burying key terms or junk fees, and tricking consumers
into sharing their data. The report highlighted the FTC’s efforts to combat the
use of dark patterns in the marketplace and reiterated the agency’s commitment
to taking action against tactics designed to trick and trap consumers.

2

https://www.ftc.gov/news-events/news/press-releases/2022/09/ftc-report-shows-rise-sophisticated-dark-patterns-designed-trick-trap-consumers
https://www.deceptive.design/

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Announcements

• Late Adds / Transfers
– Form out in a day or two

• Schedule Updates + Changes
– Likely add a Friday afternoon lab
– Will likely add Tues or Weds afternoon
– A couple TAs times will shift
– Office Hours may move

3

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Lambda Expressions

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Lambda are anonymous functions, which use expressions
– Don’t use return, lambdas always return the value of the expression.
– They are typically short and concise
– They don’t have an “intrinsic” name when using an environment diagram.

» Their name is the character 𝜆

5

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

lambda

• Function expression
– “anonymous” function creation
– Expression, not a statement, no return or any other statement

lambda <arg or arg_tuple> : <expression using args>

add_one = lambda v : v + 1 def add_one(v):
return v + 1

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Lambdas

7

>>> def inc_maker(i):
... return lambda x: x+i
...
>>> inc_maker(3)
<function inc_maker.<locals>.<lambda> at 0x10073c510>

>>> inc_maker(3)(4)
7
>>> map(inc_maker(3), [1,2,3,4])
<map object at 0x1020950b8>

>>> list(map(inc_maker(3), [1,2,3,4]))
[4, 5, 6, 7]
>>>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

• A function that returns (makes) a function

def leq_maker(c):
return lambda val: val <= c

>>> leq_maker(3)
<function leq_maker.<locals>.<lambda> at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]

Lambda with HOFs

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Lambda Examples

>>> sorted([1,2,3,4,5], lambda x: x)
[1, 2, 3, 4, 5]

>>> sorted([1,2,3,4,5], lambda x: -x)
[5, 4, 3, 2, 1]

>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "I")],
lambda x:x[0])

[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'I')]

>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "I")],
lambda x:x[1])

[(7, 'I'), (5, 'goes'), (2, 'hi'), (1, 'how')]

>>> sorted([(2,"hi"),(1,"how"),(5,"goes"),(7,"I")],
lambda x: len(x[1]))

[(7, 'I'), (2, 'hi'), (1, 'how'), (5, 'goes')]

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Environment Diagrams

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Python Tutor Examples: compose

def make_adder(n):
def adder(k):

return k + n
return adder

add_2 = make_adder(2)
add_3 = make_adder(3)
x = add_2(5)
y = add_3(x)

11

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environment Diagrams

• Organizational tools that help you understand code
• Terminology:

– Frame: keeps track of variable-to-value bindings, each function call has a frame
– Global Frame: global for short, the starting frame of all python programs, doesn’t

correspond to a specific function
– Parent Frame: The frame of where a function is defined (default parent frame is

global)
– Frame number: What we use to keep track of frames, f1, f2, f3, etc
– Variable vs Value: x = 1. x is the variable, 1 is the value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environment Diagrams Reminders
1. Always draw the global frame first
2. When evaluating assignments (lines with single equal), always evaluate right side

first
3. When you CALL a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the value in

the box
5. When assigning anything else (lists, functions, etc.), draw an arrow to the value
6. When calling a function, name the frame with the intrinsic name – the name of the

function that variable points to
7. The parent frame of a function is the frame in which it was defined in (default

parent frame is global)
8. If the value for a variable doesn’t exist in the current frame, search in the parent

frame

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo

Example 1:
• Primitives and Functions: Environment Diagram Python Tutor:
Example 2:
• make_adder Higher Order Function: Environment Diagram Python Tutor Link
Example 3:
• Compose Python Tutor Link

14

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example 1

a = "chipotle"
b = 5 > 3
c = 8

def foo(c):
return c - 5

def bar():
if b:

a = "taco bell"

result1 = foo(10)
result2 = bar()

15

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example 2

def make_adder(n):
def adder(k):

return k + n
return adder

n = 10
add_2 = make_adder(2)
x = add_2(5)

16

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Python Tutor Examples

add_2 = make_adder(2)
add_3 = make_adder(3)

x = add_2(2)
def compose(f, g):

def h(x):
return f(g(x))

return h

add_5 = compose(add_2, add_3)
z = add_5(x)

17

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environment Diagram Tips / Links

• NEVER draw an arrow from one variable to another.
• Useful Resources:

– http://markmiyashita.com/cs61a/environment_diagrams/rules_of_environment_diagr
ams/

– http://albertwu.org/cs61a/notes/environments.html

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Dictionaries

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Dictionaries are a new type in Python
• Lists let us index a value by a number, or position.
• Dictionaries let us index data by other kinds of data.

20

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionaries

• Constructors:
»dict(<list of 2-tuples>)
»dict(<key>=<val>, ...) # like kwargs
»{ <key exp>:<val exp>, … }
»{ <key>:<val> for <iteration expression> }

•>>> {x:y for x,y in zip(["a","b"],[1,2])}
•{'a': 1, 'b': 2}

• Selectors: <dict> [<key>]
»<dict>.keys(), .items(), .values()
»<dict>.get(key [, default])

• Operations:
» Key in, not in, len, min, max
» <dict>[<key>] = <val>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionary Example

22

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Dictionary Example

23

