Computational Structures in Data Science

Recursion I1

UC Berkeley EECS
Lecturer
Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Learning Objectives

« Write a recursive function
« Understand the base case and a recursive case
« Apply Recursive Functions to lists

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Recursive Process

= Recursive solutions involve two major parts:

o Base case(s), the problem is simple enough to be solved
directly

o Recursive case(s). A recursive case has three components:
* Divide the problem into one or more simpler or smaller parts

" Invoke the function (recursively) on each part, and
= Combine the solutions of the parts into a solution for the problem.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(O,n+1):
S=S+1
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

While loop:

def sum(n):
s=0
=0
while i<n:
i=+1
S=S+1
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

Recursion:
def sum(n):
if n == 0:
return 0
return n+sum(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Cheating!
Sometimes it’s best to just use a formula! But that’s not always the point. ©

def sum(n):
return (n x (n + 1)) / 2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

« The sum of no numbers is zero
« The sum of 12 through n2is the
- sum of 12 through (n-1)?

- plus n?

def sum_of_squares(n):
if n < 1
return 0
else:
return sum_of_squares(n-1) + nxx2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recall: Iteration

1. Initialize the “base” case of no iterations

]

def sum_of_sq es(n) . 2. Starting value

accum = 0

for i in range(l,n+1):
accum =_accum + %17

return accum

3. Ending value

4. New loop variable value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

-\ /

def suﬁ\ff_squares(n):
if n < 1:
return 0
else:
return sgm_of_squares(n—l) + N*x%x2

/ \

3. Assume recusive solution to
simpler problem

4.”Combine” the simpler part of the
solution, with the recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

« The sum of no numbers is zero
« The sum of 12 through n2is the
- sum of 12 through (n-1)?

- plus n?

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + nxx2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3%*2

=> sum_of_squares(l) + 2*x%*2 + 3%*2

=> sum_of_squares(0) + 1x*2 + 2%*x2 + 3%x%2
=> 0 + 1x*x2 + 2%%2 + 3%%2 = 14

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Questions

* In what order do we sum the squares ?

« How does this compare to iterative approach ?

accum = 0

return accum

def sum_of_squares(n):

for i in range(l,n+1):
accum = accum + *i

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + n*xx*2

def sum_of_squares(n):
if n < 1:
return 0
else:
return nxx2 + sum_of_squares(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Local variables

« Each call has its own “frame” of local variables

* Let’s see the environment diagrams

def sum_of_squares(n):
n_squared = n*x*2
if n < 1:
return 0
else:
return n_squared + sum_of_squares(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://goo.gl/CiFaUJ

How does it work?

Each recursive call gets its own local variables
- Just like any other function call

Computes its result (possibly using additional calls)
- Just like any other function call

Returns its result and returns control to its caller
- Just like any other function call

The function that is called happens to be itself

- Called on a simpler problem
- Eventually stops on the simple base case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2 /'—)
: __ sum_of_squares
if n ==
return 1
else:

return n_squared + sum_of_squares(n-1)

- sum_of_squares(3)

Edit code

<<First <Back Step 2 of 17 Forward> Last>>

Python 3.3 Frames Objects
-> def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
iFon == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall]
return n_squared + sum_of_squares(n-1) n 3

sum_of_squares(3)

Edit code

<<First <Back Step 3 0of 17 | Forward> | Last>>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 16

http://pythontutor.com/visualize.html

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
- iFonoe= 1 sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall]
return n_squared + sum_of_squares(n-1) n 3
n_squared 9
sum_of_squares(3) —
Edit code
0
<<First <Back Step 50f 17 | Forward> | Last>>
Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall]
n_squared = n**2
ifn==1: sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall
= return n_squared + sum_of_squares(n-1) n 3
n_squared 9
sum_of_squares(3) L

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

17

Environments Example

Python 3.3 Frames Objects
& def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
ifon == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall
return n_squared + sum_of_squares(n-1) n i3

n_squared 9
sum_of_squares(3)

Edit code f2: sum_of_squares [parent=Global]
0 n |2
Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall]
n_squared = n**2 ¢
s ifon == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Globall
return n_squared + sum_of_squares(n-1) nl3

n_squared |9
sum_of_squares(3) =6

Edit code f2: sum_of_squares [parent=Global]
B n 2
n_squared 4

<<First <Back Step 9 of 17 | Forward> | Last>>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 18

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Globall]
n_squared = n**2
ifon == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Global]
- return n_squared + sum_of_squares(n-1) n 3

n_squared |9
sum_of_squares(3) 54

Edit code f2: sum_of_squares [parent=Global]
0 n 2
n_squared 4

<<First <Back Step 10 of 17 | Forward> | Last>>

Python 3.3 Frames Objects
=> 1 def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
it on == sum_of_squares
return 1
else: fl: sum_of_squares [parent=Global]
return n_squared + sum_of_squares(n-1) nl3

n_squared 9
sum_of_squares(3)

Edit code f2: sum_of_squares [parent=Globall
@ n |2

<<First <Back Step 11 of 17 | Forward> @ Last>> n_squared 4

that has just executed 3
: line to execute

: sum_of_squares [parent=Global]

n 1

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 19

Environments Example

Python 3.3

def sum_of_squares(n):
n_squared = n**2
- if n ==
return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0

<<First <Back Step 13 of 17 | Forward > Last >>

that has just executed
t line to execute

Python 3.3

def sum_of_squares(n):
n_squared = n**2
if n ==
- return 1
else:
return n_squared + sum_of_squares(n-1)

sum_of_squares(3)
Edit code
0
<<First <Back Step 14 of 17 | Forward> @ Last>>

that has just executed
t line to execute

Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Globall
n |3

n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n |1

n_squared 1
Frames Objects

Global frame func sum_of_squares(n) [parent=Global]

sum_of_squares

fl: sum_of_squares [parent=Global]
n (3
n_squared |9

f2: sum_of_squares [parent=Global]
n 2

n_squared 4

f3: sum_of_squares [parent=Global]
n 1
n_squared 1

20

http://pythontutor.com/composingprograms.html

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
n_squared = n**2
if n == sum_of_squares
3 return 1
else: fl: sum_of_squares [parent=Global]
return n_squared + sum_of_squares(n-1) n ‘3

n ed 9
sum_of_squares(3) -squar ‘

Edit code f2: sum_of_squares [parent=Globall

0 n |2

<< First <Back Step 15 of 17 | Forward > Last >> n_squared ‘i

e that has just executed

. f3: sum_of_squares [parent=Global]
xt line to execute -

n 1
n_squared |1

Return 1
value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 21

Environments Example

Python 3.3 Frames Objects
def sum_of_squares(n): Global frame func sum_of_squares(n) [parent=Global]
2 n_squared = n**2
. __ sum_of_squares ‘
if n == L
return 1
else: fl: sum_of_squares [parent=Global]
= 6 return n_squared + sum_of_squares(n-1) n 13
n_squared 9
sum_of_squares(3) St ‘
Edit code f2: sum_of_squares [parent=Global]
0 n 2
=
<< First <Back Step 16 of 17 | Forward > Last >> n_squared \ﬂ
Return
: that has just executed value

<t line to execute
f3: sum_of_squares [parent=Global]

n ‘i

n_squared \3

Return
value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org 22

Environments Example

Python 3.3 Frames
def sum_of_squares(n): Global frame
n_squared = n**2
if n == sum_of_squares 5
return 1
else: fl: sum_of_squares [parent=Global]

return n_squared + sum_of_squares(n-1)

sum_of_squares(3)

Edit code

<<First <Back Step 17 of 17 | Forward> @ Last>>

2 that has just executed
<t line to execute

f3:

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

n |3
n_squared |9

Return 14
value

sum_of_squares [parent=Global]
n ‘2
n_squared ‘4

Return
value

sum_of_squares [parent=Global]

o s

n_squared ‘ 1

Return 1
value

Objects

func sum_of_squares(n)

[parent=Globall

23

Recursion Visualizer

« A new tool, similar to PythonTutor which shows just the recursive calls.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://www.recursionvisualizer.com/?function_definition=def%20sum_of_squares(n)%3A%0A%20%20%20%20n_squared%20%3D%20n**2%0A%20%20%20%20if%20n%20%3C%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n_squared%20%2B%20sum_of_squares(n-1)%0A&function_call=sum_of_squares(10)

Recursion With Lists

 Goal: Find the smallest item in a list, recursively.
 Consider: How do we break this task into smaller parts? What is the

“smallest list”?
- We care about the size of the list itself, not the values.
def first(s):
"""Return the first element in a sequence.”"""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

def min_r(s):
'""TReturn minimum value in a sequence.'''
if

else:

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

min_r

« Works because we can eventually call min() with just two numbers
« Each recursive call shrinks the list by 1 element.

- This is just shorter and reduces the number of frames, but the same recursive calls

- Sadly recursionvisualizer.com doesn’t work on this example ®

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html

Recursion With Strings, and Other Iterables

» Consider the lists example. It’s basically the same thing. ©
* Recursive case: Split up the item into a small “first” item, and the "rest

/4

def reverse(s):

>>> reverse('hello')

'olleh'

>>> reverse(reverse('hello'))

'hello'

if not s:
return

return reverse(rest(s)) + first(s)

return reverse(s[l:]) + s[0]

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion?

- “After Abstraction, Recursion is probably the 2" biggest idea
in this course”

* “It’s tremendously useful when the problem is self-similar”

* “It’s no more powerful than iteration, but often leads to
more concise & better code”

* “It’s more ‘mathematical’™”
* “It embodies the beauty and joy of computing”

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

