
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | https://cs88.org

Recursion II

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Write a recursive function
• Understand the base case and a recursive case
• Apply Recursive Functions to lists

2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

The Recursive Process

§ Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be solved

directly
ú Recursive case(s). A recursive case has three components:

 Divide the problem into one or more simpler or smaller parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution for the problem.

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(0,n+1):

s=s+i
return s

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

def sum(n):
s=0
i=0
while i<n:

i=i+1
s=s+i

return s

While loop:

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Sum Numbers

def sum(n):
if n == 0:

return 0
return n+sum(n-1)

Recursion:

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Iteration vs Recursion: Cheating!

7

def sum(n):
return (n * (n + 1)) / 2

Sometimes it’s best to just use a formula! But that’s not always the point. J

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

• The sum of no numbers is zero
• The sum of 12 through n2 is the

– sum of 12 through (n-1)2

– plus n2

8

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recall: Iteration

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Key concepts – by example

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to
simpler problem 4. ”Combine” the simpler part of the

solution, with the recursive case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

• The sum of no numbers is zero
• The sum of 12 through n2 is the

– sum of 12 through (n-1)2

– plus n2

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2
=> sum_of_squares(1) + 2**2 + 3**2
=> sum_of_squares(0) + 1**2 + 2**2 + 3**2
=> 0 + 1**2 + 2**2 + 3**2 = 14

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Questions

• In what order do we sum the squares ?
• How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Local variables

• Each call has its own “frame” of local variables
• Let’s see the environment diagrams

def sum_of_squares(n):
n_squared = n**2
if n < 1:

return 0
else:

return n_squared + sum_of_squares(n-1)

https://goo.gl/CiFaUJ

https://goo.gl/CiFaUJ

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

How does it work?

• Each recursive call gets its own local variables
– Just like any other function call

• Computes its result (possibly using additional calls)
– Just like any other function call

• Returns its result and returns control to its caller
– Just like any other function call

• The function that is called happens to be itself
– Called on a simpler problem
– Eventually stops on the simple base case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

16

pythontutor.com

http://pythontutor.com/visualize.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

17

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

18

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

19

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

20

permlink

http://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

21

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

22

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example

23

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion Visualizer

• A new tool, similar to PythonTutor which shows just the recursive calls.
• View Recursion

https://www.recursionvisualizer.com/?function_definition=def%20sum_of_squares(n)%3A%0A%20%20%20%20n_squared%20%3D%20n**2%0A%20%20%20%20if%20n%20%3C%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n_squared%20%2B%20sum_of_squares(n-1)%0A&function_call=sum_of_squares(10)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion With Lists

• Goal: Find the smallest item in a list, recursively.
• Consider: How do we break this task into smaller parts? What is the

"smallest list"?
– We care about the size of the list itself, not the values.

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
'''Return minimum value in a sequence.'''
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

min_r

• Works because we can eventually call min() with just two numbers
• Each recursive call shrinks the list by 1 element.
• Python Tutor Link (with first and rest functions)
• Python Tutor (no first/rest defined)

– This is just shorter and reduces the number of frames, but the same recursive calls

• Sadly recursionvisualizer.com doesn't work on this example L

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Recursion With Strings, and Other Iterables

• Consider the lists example. It's basically the same thing. J
• Recursive case: Split up the item into a small "first" item, and the "rest"

def reverse(s):
"""
>>> reverse('hello')
'olleh'
>>> reverse(reverse('hello'))
'hello'
"""
if not s:

return ''
return reverse(rest(s)) + first(s)
return reverse(s[1:]) + s[0]

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why Recursion?

• “After Abstraction, Recursion is probably the 2nd biggest idea
in this course”

• “It’s tremendously useful when the problem is self-similar”
• “It’s no more powerful than iteration, but often leads to

more concise & better code”
• “It’s more ‘mathematical’”
• “It embodies the beauty and joy of computing”

