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Learning Objectives

• Write a recursive function
• Understand the base case and a recursive case
• Apply Recursive Functions to lists
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The Recursive Process

§ Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to be solved 

directly
ú Recursive case(s). A recursive case has three components:

  Divide the problem into one or more simpler or smaller parts
  Invoke the function (recursively) on each part, and
  Combine the solutions of the parts into a solution for the problem.
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Iteration vs Recursion: Sum Numbers

For loop:

def sum(n):
s=0
for i in range(0,n+1):

s=s+i
return s 
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Iteration vs Recursion: Sum Numbers

def sum(n):
s=0
i=0
while i<n:

i=i+1
s=s+i

return s 

While loop:
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Iteration vs Recursion: Sum Numbers

def sum(n):
if n == 0:

return 0
return n+sum(n-1)

Recursion:
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Iteration vs Recursion: Cheating!
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def sum(n):
return (n * (n + 1)) / 2

Sometimes it’s best to just use a formula! But that’s not always the point. J



UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

In words

• The sum of no numbers is zero
• The sum of 12 through n2 is the 

– sum of 12 through (n-1)2 

– plus n2
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def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2 
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Recall: Iteration

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value
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Recursion Key concepts – by example

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to 
simpler problem 4. ”Combine” the simpler part of the 

solution, with the recursive case
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In words

• The sum of no numbers is zero
• The sum of 12 through n2 is the 

– sum of 12 through (n-1)2 

– plus n2

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2 
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Why does it work

sum_of_squares(3)

# sum_of_squares(3) => sum_of_squares(2) + 3**2 
#              => sum_of_squares(1) + 2**2 + 3**2 
#              => sum_of_squares(0) + 1**2 + 2**2 + 3**2  
#              => 0 + 1**2 + 2**2 + 3**2 = 14
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Questions

• In what order do we sum the squares ?
• How does this compare to iterative approach ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2 

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)
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Local variables

• Each call has its own “frame” of local variables
• Let’s see the environment diagrams

def sum_of_squares(n):
n_squared = n**2
if n < 1:

return 0
else:

return n_squared + sum_of_squares(n-1)

https://goo.gl/CiFaUJ

https://goo.gl/CiFaUJ
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How does it work?

• Each recursive call gets its own local variables
– Just like any other function call

• Computes its result (possibly using additional calls)
– Just like any other function call

• Returns its result and returns control to its caller
– Just like any other function call

• The function that is called happens to be itself
– Called on a simpler problem
– Eventually stops on the simple base case
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Environments Example
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pythontutor.com

http://pythontutor.com/visualize.html
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Environments Example

17



UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Environments Example
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Environments Example
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Environments Example
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permlink

http://pythontutor.com/composingprograms.html
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Environments Example
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Environments Example
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Environments Example
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Recursion Visualizer

• A new tool, similar to PythonTutor which shows just the recursive calls. 
• View Recursion

https://www.recursionvisualizer.com/?function_definition=def%20sum_of_squares(n)%3A%0A%20%20%20%20n_squared%20%3D%20n**2%0A%20%20%20%20if%20n%20%3C%201%3A%0A%20%20%20%20%20%20%20%20return%200%0A%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20return%20n_squared%20%2B%20sum_of_squares(n-1)%0A&function_call=sum_of_squares(10)
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Recursion With Lists

• Goal: Find the smallest item in a list, recursively.
• Consider: How do we break this task into smaller parts? What is the 

"smallest list"?
– We care about the size of the list itself, not the values.

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
'''Return minimum value in a sequence.'''
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case
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min_r

• Works because we can eventually call min() with just two numbers
• Each recursive call shrinks the list by 1 element.
• Python Tutor Link (with first and rest functions)
• Python Tutor (no first/rest defined)

– This is just shorter and reduces the number of frames, but the same recursive calls

• Sadly recursionvisualizer.com doesn't work on this example L

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html
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Recursion With Strings, and Other Iterables

• Consider the lists example. It's basically the same thing. J
• Recursive case: Split up the item into a small "first" item, and the "rest"

def reverse(s):
"""
>>> reverse('hello')
'olleh'
>>> reverse(reverse('hello'))
'hello'
"""
if not s:

return ''
return reverse(rest(s)) + first(s)
# return reverse(s[1:]) + s[0]
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Why Recursion?

• “After Abstraction, Recursion is probably the 2nd biggest idea 
in this course”

• “It’s tremendously useful when the problem is self-similar”
• “It’s no more powerful than iteration, but often leads to 

more concise & better code”
• “It’s more ‘mathematical’”
• “It embodies the beauty and joy of computing”


