
Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Wrap Up:
Why Linked Lists?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Why are linked lists useful?

• Honestly, a list() is easier most of the time
– Python handles all the hard details!
– When data gets large, there are lots of edge cases.
• In terms of efficiency: Linked lists make it fast to move items around, inserts
and deletes.
– But they are slower to finding any single item.
• Linked Lists are a simplified forms of other more complicated structures
– a Tree: Each "link" can have multiple children
– a Graph: Each "node" can have many neighbors

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Uses for a Linked List

• Modeling a Polynomial Equation
– each item is (coefficient, exponent, next_term)
• Items in a music playlist
– each item is a (song, next_song) pair
– easy to add/remove items
» Specifically: often want to remove the first item

• Model real-world relationships
– Anything that is a "chain" is a good option
– Next week: We'll extend this idea to "trees"

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Efficiency of Linked Lists vs Lists

• Linked Lists generally use less memory.
• Linked Lists:
– Once you've found an item, inserting / removing is easy, O(1)
– Finding anything other than the first/last item is O(n)
• "Regular" Lists:
– Inserting / Removing items, other than the last is O(n) – due to internal copying
– Finding any random item is O(1).

• What if you need to iterate over all items in order?
– O(n) in both cases

Computational Structures in Data Science

UC Berkeley EECS
Lecturer

Michael Ball

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Lecture:
Exceptions

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Learning Objectives

• Exceptions give us a formal way to address error conditions
• "Catch" exceptions in a Python Program
• Define and Raise our own exceptions

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Errors Can Occur Just About Anywhere!

• Function receives arguments of improper type?
• Resources (e.g. files or some data) are not available
• Network connection is lost or times out?

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Example exceptions (Docs)

• Unhandled, thrown back to the top level
interpreter

• Or halt the python program

>>> 3/0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
>>> str.lower(1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: descriptor 'lower' requires a 'str' object
but received a 'int'
>>> ""[2]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>>

noteboo
k

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Functions

• Q: What is a function supposed to do?
• A: One thing well
• Q: What should it do when it is passed arguments that don’t make sense?
>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
???

>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog’)

????

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Exceptional exit from functions

• Function doesn’t “return” but instead execution is thrown out
of the function

>>> def divides(x, y):
... return y%x == 0
...
>>> divides(0, 5)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in divides

ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
... return data[selector]
...
>>> get({'a': 34, 'cat':'9 lives'}, 'dog')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in get

KeyError: 'dog'
>>>

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Reading A "Stack Trace" or "Traceback" (Docs)

• All errors in Python should return some structured feedback.
• Errors may be dense, but it contains some really helpful information!
👉 python3 -i 20-Exceptions.py
What is your age? 5
Catching CS88Error
Traceback (most recent call last):
File "…Exceptions.py", line 24, in <module>
get_age_in_days()

File "…", line 20, in get_age_in_days
raise e

File "…", line 14, in get_age_in_days
raise CS88Error('You seem young!')

__main__.CS88Error: You seem young!

https://docs.python.org/3/library/traceback.html

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Continue out of multiple calls deep

• Stack unwinds until exception is handled or top

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

types of exceptions

• TypeError -- A function was passed the wrong number/type of
argument

• NameError -- A name wasn't found
• KeyError -- A key wasn't found in a dictionary
• RuntimeError -- Catch-all for troubles during interpretation
• Your own exceptions!

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Flow of control stops at the exception

• And is ‘thrown back’ to wherever it is caught

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Assert Statements

• Allow you to make assertions about assumptions that your code relies on
– Use them liberally!
– Incoming data is "dirty" and unsafe till you’ve "cleaned" it

• Raise an exception of type AssertionError
• Ignored in optimize flag: python3 –O …

– Governed by bool __debug__

assert <assertion expression>, <string for failed>

def divides(x, y):
assert x != 0, ”Denominator must be non-zero”
return y%x == 0

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Handling Errors – try / except

• Wrap your code in try – except statements

• Execution rule
– <try suite> is executed first
– If during this an exception is raised and not handled otherwise
– And if the exception inherits from <exception class>
– Then <except suite> is executed with <name> bound to the exception

• Control jumps to the except suite of the most recent try that handles the
exception

try:
<try suite>

except <exception class> as <name>:
<except suite>

... # continue here if <try suite> succeeds w/o exception

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Raise statement

• Exception are raised with a raise statement\
raise <exception>

• <expression> must evaluate to a subclass of BaseException or an instance
of one

• Exceptions are constructed like any other object
TypeError(‘Bad argument’)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Exceptions are Classes

class NoiseyException(Exception):
def __init__(self, stuff):

print("Bad stuff happened", stuff)

try:
return fun(x)

except:
raise NoiseyException((fun, x))

class CS88Error(Exception):
pass # The one time you can skip init. ;)

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Demo

UC Berkeley | Computer Science 88 | Michael Ball | http://cs88.org

Summary

• Approach use of exceptions as a design problem
– Meaningful behavior => methods [& attributes]
– ADT methodology
– What’s private and hidden? vs What’s public?

• Use it to streamline development

• Anticipate exceptional cases and unforeseen problems
– try … catch
– raise / assert

