
CONTROL AND ITERATION 1
DATA C88C

August 31, 2022

1 Control

Control structures direct the flow of logic in a program. For example, conditionals (if-
elif-else) allow a program to skip sections of code, while iteration (while), allows a
program to repeat a section.

1.1 If statements

Conditional statements let programs execute different lines of code depending on certain
conditions. Let’s review the if- elif-else syntax:
if <conditional expression>:

<suite of statements>
elif <conditional expression>:

<suite of statements>
else:

<suite of statements>

Recall the following points:

• The else and elif clauses are optional, and you can have any number of elif
clause.

• A conditional expression is a expression that evaluates to either a true value (True,
a non-zero integer, etc.) or a false value (False, 0, None, etc.).

• Only the suite that is indented under the first if/elif that has a conditional ex-
pression that evaluates to True will be executed.

• If none of the conditional expressions are True, then the else suite is executed.
There can only be one else clause in a conditional statement!



DISCUSSION 1: CONTROL AND ITERATION Page 2
1.2 Boolean Operators

Python also includes the boolean operators and, or, and not. These operators are used
to combine and manipulate boolean values.

• not returns the opposite truth value of the following expression.

• and short-circuits at the first False value and returns it. If all values evaluate to
True, the last value is returned.

• or short-circuits at the first True value and returns it. If all values evaluate to False,
the last value is returned.

>>> not None
True
>>> not True
False
>>> -1 and 0 and 1
0
>>> False or 9999 or 1/0
9999

1.3 Questions

1. Determine what the Python interpreter will output given the following lines of code.
>>> from operator import add, mul
>>> mul(add(5, 6), 8)

Solution: 88

>>> print('x')

Solution: x

>>> y = print('x')

Solution: x

>>> print(y)

Solution: None

>>> print(add(4, 2), print('a'))

Data C88C Fall 2022



DISCUSSION 1: CONTROL AND ITERATION Page 3

Solution: a 6 None

def foo(x):
print(x)
return x + 1

def bar(y, x):
print(x - y)

>>> foo(3)

Solution:

3
4

>>> bar(3)

Solution: Error

>>> bar(6, 1)

Solution: -5

>>> bar(foo(10), 11)

Solution:

10
0

Data C88C Fall 2022



DISCUSSION 1: CONTROL AND ITERATION Page 4

2. Tommy will only wear a jacket outside if it is below 60 degrees or it is raining.

Write a function that takes in the current temperature and a boolean value telling if it
is raining and returns True if Tommy will wear a jacket and False otherwise.

First, try solving this problem using an if statement.
def wears_jacket_with_if(temp, raining):

"""
>>> wears_jacket_with_if(90, False)
False
>>> wears_jacket_with_if(40, False)
True
>>> wears_jacket_with_if(100, True)
True
"""

Solution:
if temp < 60 or raining:

return True
else:

return False

Note that we’ll either return True or False based on a single condition, whose truthi-
ness value will also be either True or False. Knowing this, try to write this function
using a single line.
def wears_jacket(temp, raining):

Solution:
return temp < 60 or raining

Video walkthrough

Data C88C Fall 2022

https://www.youtube.com/watch?v=E8VPVCbyfiE&list=PLx38hZJ5RLZfg6jvEBBtjc5fnc5BclyEb&index=2&t=0s


DISCUSSION 1: CONTROL AND ITERATION Page 5
3. To handle discussion section overflow, Matt and other TAs may direct students to a

more empty section that is happening at the same time.

Write a function that takes in the number of students in two sections and prints out
what to do if either section exceeds 30 students.

Hint: You can do str(<number>)+ <string> to concatenate a number and a string
def handle_overflow(s1, s2):

"""
>>> handle_overflow(27, 15)
No overflow
>>> handle_overflow(35, 29)
Move to Section 2: 1
>>> handle_overflow(20, 32)
Move to Section 1: 10
>>> handle_overflow(35, 30)
No space left in either section
"""

Solution:
if s1 <= 30 and s2 <= 30:

print("No overflow")
elif s2 > 30 and s1 < 30:

print("Move to Section 1:" + str(30 - s1))
elif s1 > 30 and s2 < 30:

print("Move to Section 2:" + str(30 - s2))
else:

print("No space left in either section")

Video walkthrough

Data C88C Fall 2022

https://www.youtube.com/watch?v=Fiw0f5yuQgo&vq=hd1080&t=29m19s


DISCUSSION 1: CONTROL AND ITERATION Page 6
4. Write a function that returns True if a positive integer n is a prime number and False

otherwise.

A prime number n is a number that is not divisible by any numbers other than 1 and
n itself. For example, 13 is prime, since it is only divisible by 1 and 13, but 14 is not,
since it is divisible by 1, 2, 7, and 14.

Hint: use the % operator: x % y returns the remainder of x when divided by y.
def is_prime(n):

"""
>>> is_prime(10)
False
>>> is_prime(7)
True
"""

Solution:
if n == 1:

return False
k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

Alternatively, the while loop’s conditional expression could ensure that k is less
than or equal to the square root of n.
Video walkthrough

Data C88C Fall 2022

https://www.youtube.com/watch?v=_EsWkCytavI&list=PLx38hZJ5RLZfg6jvEBBtjc5fnc5BclyEb&index=2

