L1sTS AND LIST COMPREHENSION

DATA C88C

September 7, 2022

Lists

Let’s imagine you order a mushroom and cheese pizza from Domino’s, and that they
represent your order as a list:
>>> pizzal = ['cheese', 'mushrooms']

A couple minutes later, you realize that you really want onions on the pizza. Based on
what we know so far, Domino’s would have to build an entirely new list to add onions:
>>> pizza2 = pizzal + ['onions'] # creates a new python 1list

>>> pizza?2

['cheese', mushrooms', 'onions']

>>> pizzal # the original list is unmodified

['cheese', 'mushrooms']

But this is silly, considering that all Domino’s had to do was add onions on top of pizzal
instead of making an entirely new pizza?2.

Python actually allows you to mutate some objects, includings lists and dictionaries. Mu-
tability means that the object’s contents can be changed. So instead of building a new
pizza2,wecanuse pizzal.append(’onions’) to mutate pizzal.

>>> pizzal.append('onions')

>>> pizzal

['cheese', 'mushrooms', 'onions']

Although lists and dictionaries are mutable, many other objects, such as numeric types,
tuples, and strings, are immutable, meaning they cannot be changed once they are created.
We can use the familiar indexing operator to mutate a single element in a list. For instance
lst [4]="hello’ would change the fifth element in 1st to be the string "hello’. In



DISCUSSION 2: LISTS AND LIST COMPREHENSION Page 2
addition to the indexing operator, lists have many mutating methods. List methods are
functions that are bound to a specific list. Some useful list methods are listed here:

1. append (el) adds el to the end of the list

2. insert (i, el) insertel atindex i

3. remove (el) removes the first occurrence of el in list, otherwise errors
4. sort () sorts elements of list in place

List methods are called via dot notation, as in:
>>> colts = ['andrew luck', 'reggie wayne']
>>> colts.append('trent richardson')

None of the mutating list methods return a new list — they simply modify the original
list and return None.

Data C88C Fall 2022



Di1SCUSSION 2: LisTS AND LIST COMPREHENSION Page 3

For Loops and List Comprehensions

There are two common methods of looping through lists. If you don’t need indices, loop-
ing over elements is usually more clear.

e for el in 1lst loops through the elementsin 1st
e for 1 in range (len(lst)) loops through the valid, positive indices of 1st

A list comprehension is a compact way to create a list whose elements are the results of
applying a fixed expression to elements in another sequence.

[<map exp> for <name> in <iter exp> 1f <filter exp>]
Let’s break down an example:
[x * x — 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a series of opera-
tions to our initial sequence [1, 2, 3, 4, 5]. We only keep the elements that satisfy
the filter expression x $ 2 == 1 (1, 3, and 5). For each retained element, we apply the
map expression x+«x - 3 before adding it to the new list that we are creating, resulting
in the output [-2, 6, 22].

Note: The if clause in a list comprehension is optional.

Data C88C Fall 2022



Di1SCUSSION 2: LisTS AND LIST COMPREHENSION Page 4

Questions

1. What would Python print?
>> [1i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [1 » 1 -1 for i in [5, -1, 3, -1, 3] if i > 2]

>>> [[y » 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

2. Define a function foo that takes in a list 1st and returns a new list that keeps only
the even-indexed elements of 1st and multiples each of those elements by the corre-
sponding index.
def foo(lst):

mmn

>>> x = [1, 2, 3, 4, 5, 6]
>>> foo (x)

[0, 6, 20]

mmn

return | ]

Data C88C Fall 2022



DISCUSSION 2: LISTS AND LIST COMPREHENSION Page 5
3. Write a function square_elements which takes a 1st and replaces each element

with the square of that element. Mutate 1st rather than returning a new list.

def square_elements (lst):
mmn

>>> I1st = [1, 2, 3]

>>> square_elements (1st)
>>> 1st

(1, 4, 9]

mmn

4. Write a function that takes in two values x and e1, and a list, and adds as many e1’s
to the end of the list as there are x’s.

def add_this_many(x, el, 1lst):
"mr Adds el to the end of 1lst the number of times x occurs
in 1st.
>>> 1st = [1, 2, 4, 2, 1]
>>> add _this_many (1, 5, 1st)
>>> ]st
(1, 2, 4, 2, 1, 5, 5]

mmn

Data C88C Fall 2022



DISCUSSION 2: LISTS AND LIST COMPREHENSION Page 6
5. Reverse a list in place, i.e. mutate the given list itself, instead of returning a new list.
def reverse(lst):
"mr Reverses 1st in place.
>>> x = [3, 2, 4, 5, 1]
>>> reverse (x)
>>> x

(1, 5, 4, 2, 3]

mmn

Data C88C Fall 2022



