
INHERITANCE AND ASYMPTOTICS 8
DATA C88C

October 26, 2022

1 Inheritance

1.1 Introduction

Python classes can implement a useful abstraction technique known as inheritance. To
illustrate this concept, consider the following Dog and Cat classes.
class Dog():

def __init__(self, name, owner):
self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat():
def __init__(self, name, owner, lives=9):

self.is_alive = True
self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 2
Notice that because dogs and cats share a lot of similar qualities, there is a lot of repeated
code! To avoid redefining attributes and methods for similar classes, we can write a single
superclass from which the similar classes inherit. For example, we can write a class called
Pet and redefine Dog as a subclass of Pet:
class Pet():

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where one
class is a more specific version of the other, e.g. a dog is a pet. Because Dog inherits from
Pet, we didn’t have to redefine init or eat. However, since we want Dog to talk
in a way that is unique to dogs, we did override the talk method.

Data C88C Fall 2022

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 3
1.2 Questions

1. Assume these commands are entered in order. What would Python output?
class Foo:

def __init__(self, a):
self.a = a

def garply(self):
return self.baz(self.a)

class Bar(Foo):
a = 1
def baz(self, val):

return val

>>> f = Foo(4)
>>> b = Bar(3)
>>> f.a

Solution: 4

>>> b.a

Solution: 3

>>> f.garply()

Solution: AttributeError: 'Foo'object has no attribute 'baz'

>>> b.garply()

Solution: 3

>>> b.a = 9
>>> b.garply()

Solution: 9

>>> f.baz = lambda val: val * val
>>> f.garply()

Data C88C Fall 2022

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 4

Solution: 16

Data C88C Fall 2022

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 5
2. Below is a skeleton for the Cat class, which inherits from the Pet class. To com-

plete the implementation, override the init and talk methods and add a new
lose_life method.

Hint: You can call the init method of Pet to set a cat’s name and owner.
class Cat(Pet):

def __init__(self, name, owner, lives=9):

Solution:
Pet.__init__(self, name, owner)
self.lives = lives

def talk(self):
""" Print out a cat's greeting.
>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!
"""

Solution:
print(self.name + ' says meow!')

def lose_life(self):
"""Decrements a cat's life by 1. When lives reaches
zero, 'is_alive' becomes False.
"""

Solution:
if self.lives > 0:

self.lives -= 1
if self.lives == 0:

self.is_alive = False
else:

print("This cat has no more lives to lose :(")

Video walkthrough

3. More cats! Fill in this implemention of a class called NoisyCat, which is just like a
normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat!
class _____________________: # Fill me in!

Data C88C Fall 2022

https://www.youtube.com/watch?v=BatqjYa7WZ8&list=PLx38hZJ5RLZfel-Gi9pjaUbfQDCZIsWMU&vq=hd1080&t=34m50s

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 6

Solution:
class NoisyCat(Cat):

"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

Solution:
Cat.__init__(self, name, owner, lives)

No, this method is not necessary because NoisyCat already inherits Cat’s init
method

def talk(self):
"""Talks twice as much as a regular cat.
>>> NoisyCat('Magic', 'James').talk()
Magic says meow!
Magic says meow!
"""

Solution:
Cat.talk(self)
Cat.talk(self)

Video walkthrough

Data C88C Fall 2022

https://www.youtube.com/watch?v=BatqjYa7WZ8&list=PLx38hZJ5RLZfel-Gi9pjaUbfQDCZIsWMU&vq=hd1080&t=38m10s

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 7

2 Asymptotics

2.1 Introduction

When we talk about the efficiency of a function, we are often interested in the following:
as the size of the input grows, how does the runtime of the function change? And what
do we mean by “runtime”?

• square(1) requires one primitive operation: * (multiplication). square(100)
also requires one. No matter what input n we pass into square, it always takes
one operation.

input function call return value number of operations
1 square(1) 1 · 1 1
2 square(2) 2 · 2 1
...

...
...

...
100 square(100) 100 · 100 1

...
...

...
...

n square(n) n · n 1

• factorial(1) requires one multiplication, but factorial(100) requires 100 mul-
tiplications. As we increase the input size of n, the runtime (number of operations)
increases linearly proportional to the input.

input function call return value number of operations
1 factorial(1) 1 · 1 1
2 factorial(2) 2 · 1 · 1 2
...

...
...

...
100 factorial(100) 100 · 99 · · · 1 · 1 100

...
...

...
...

n factorial(n) n · (n− 1) · · · 1 · 1 n

Data C88C Fall 2022

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 8
2.2 Guidelines

Here are some general guidelines for finding the order of growth for the runtime of a
function:

• If the function is recursive or iterative, you can subdivide the problem as seen above:

– Count the number of recursive calls/iterations that will be made in terms of
input size n.

– Find how much work is done per recursive call or iteration in terms of input size
n.

The answer is usually the product of the above two, but be sure to pay attention to
control flow!

• If the function calls helper functions that are not constant-time, you need to take the
runtime of the helper functions into consideration.

• We can ignore constant factors. For example, Θ(1000000n) = Θ(n).

• We can also ignore lower-order terms. For example, Θ(n3 + n2 + 4n + 399) = Θ(n3).
This is because the n3 term dominates as n gets larger.

2.3 Questions

1. What is the runtime of the following function?
def one(n):

if 1 == 1:
return None

return n

a. Θ(1) b. Θ(logn) c. Θ(n) d. Θ(n2) e. Θ(2n)

Solution: Θ(1) - the function always returns None, because 1 == 1 is always True.
And even if it was a false statement, the function would just return n. So since the
runtime of the function doesn’t change with respect to the size of the input, it is
constant time.

2. What is the runtime of the following function?
def two(n):

for i in range(n):
print(n)

a. Θ(1) b. Θ(logn) c. Θ(n) d. Θ(n2) e. Θ(2n)

Data C88C Fall 2022

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 9

Solution: Θ(n) - the function iterates n times; if n increases by 1, the function
loops 1 additional time. Therefore there is a linear relationship between the input
size and runtime.

3. What is the runtime of the following function?
def three(n):

while n > 0:
n = n // 2

a. Θ(1) b. Θ(logn) c. Θ(n) d. Θ(n2) e. Θ(2n)

Solution: Θ(logn) - The function continues to loop as long as n > 0. Inside the
while loop, we divide n by 2 every loop. So to get the function to loop one ad-
ditional time, we need to double our original input size. This is a logarithmic
relationship between input size and runtime.

4. What is the runtime of the following function?
def four(n):

for i in range(n):
for j in range(i):

print(str(i), str(j))

a. Θ(1) b. Θ(logn) c. Θ(n) d. Θ(n2) e. Θ(2n)

Solution: d. Θ(n2) - The outer loop loops through every number from 0 to n. The
inner loop loops corresponding to the outer loop. So the total number of loops
from the inner loop looks like this: 0 + 1 + 2 + 3 + 4 ... + n. This is the summation
of the first n natural numbers = n(n + 1)/2, which asymptotically is Θ(n2).

5. What is the runtime of the following function?
def five(n):

if n <= 0:
return 1

return five(n - 1) + five(n - 2)

a. Θ(1) b. Θ(logn) c. Θ(n) d. Θ(n2) e. Θ(2n)

Solution: e. Θ(2n) - Draw out the tree of recursive calls. You should see that every
node branches out into 2 more nodes. Since the base case returns when n <= 0,
and each recursive call subtracts 1 or 2 from n, the height of our tree is n. We’re

Data C88C Fall 2022

DISCUSSION 8: INHERITANCE AND ASYMPTOTICS Page 10

branching out by a factor of 2 each layer for n layers – that means we’ll have 2n

nodes in our tree of recursive calls. Each ’node’ represents 1 ’unit of work’ as all
the function does is return something. So 1 unit of work across 2n nodes is 2n total.

6. What is the runtime of the following function?
def six(n):

if n <= 0:
return 1

return six(n//2) + six(n//2)

a. Θ(1) b. Θ(logn) c. Θ(n) d. Θ(n2) e. Θ(2n)

Solution: c. Θ(n) - Draw out the tree of recursive calls. You should see that every
node branches out into 2 more nodes. Since the base case returns when n <= 0,
and each recursive call divides n by 2, the height of our tree is logn (by the same
logic as three(n): if we want one additional layer in our tree, our original input
has to be doubled, which is a logarithmic relationship). We’re branching out by a
factor of 2 each layer for logn layers – that means we’ll have 2logn = n nodes in our
tree of recursive calls. Each ’node’ represents 1 ’unit of work’ as all the function
does is return something. So 1 unit of work across n nodes is n total.

Data C88C Fall 2022

