
TREES 10
DATA C88C

November 9, 2022

1 Trees

1.1 Introduction

In computer science, trees are recursive data structures that are widely used in various
settings. Contrary to our ideas of a tree, in computer science, a tree branches downward.
The root of a tree starts at the top, and the leaves are at the bottom. A tree is considered a
recursive data structure because every branch from a node is also a tree.

1.2 Implementation

Recall that we have defined a tree as having a value and a list of branches. Below is the
most basic implementation of a Tree class that we will be using.
class Tree:

def __init__(self, value, branches=()):
for b in branches:

assert isinstance(b, Tree)
self.value = value
self.branches = list(branches)

def is_leaf(self):
return not self.branches

def __repr__(self):
if self.branches:

branches_str = ', ' + repr(self.branches)
else:

branches_str = ''
return 'Tree({0}{1})'.format(self.value, branches_str)



DISCUSSION 10: TREES Page 2
Notice that with this implementation we can mutate a tree using attribute assignment.
>>> t = Tree(3, [Tree(4), Tree(5)])
>>> t.value = 5
>>> t
Tree(5, [Tree(4), Tree(5)])

1.3 Definitions

Here is an example tree:

7

1

3

2

−4 0

8

6

11

16

17

19

20

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple branches.

• Child node: A node that has a parent. A child node can only belong to one parent.

• Root: The top node of the tree. In our example, the node that contains 7 is the root.

• Label: The value at a node. In our example, all of the integers are values.

• Leaf: A node that has no branches. In our example, the nodes that contain −4, 0, 6,
17, and 20 are leaves.

• Branch: A subtree of the root. Note that trees have branches, which are trees them-
selves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. In other words, the number of edges
between the root of the tree to the node. In the diagram, the node containing 19 has
depth 1; the node containing 3 has depth 2. Since there are no edges between the root
of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6,
and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has
height 4.

In computer science, there are many different types of trees. Some vary in the number of
branches each node has; others vary in the structure of the tree.

Data C88C Fall 2022



DISCUSSION 10: TREES Page 3

2 Questions

1. What would Python display? If you believe an expression evaluates to a Tree object,
write Tree.
>>> t0 = Tree(0)
>>> t0.value

Solution: 0

>>> t0.branches

Solution: []

>>> t1 = Tree(0, [1, 2])#Is this a valid tree?

Solution: AssertionError #As the branches must be Tree objects

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])
>>> t2.branches[0]

Solution: Tree(1)

>>> t2.branches[1].branches[0].value

Solution: 3

2. Define a function make even which takes in a tree t whose values are integers, and
mutates the tree such that all the odd integers are increased by 1 but all the even
integers remain the same.
def make_even(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
>>> make_even(t)
>>> t.value
2
>>> t.branches[0].branches[0].value
4
>>> t
Tree(2, [Tree(2, [Tree(4)]), Tree(4), Tree(6)])
"""

Data C88C Fall 2022



DISCUSSION 10: TREES Page 4

Solution:
if t.value % 2 != 0:

t.value += 1
for branch in t.branches:

make_even(branch)

3. Write a function that combines the values of two trees t1 and t2 together with the
combiner function. Assume that t1 and t2 have identical structure. This function
should return a new tree.
def combine_tree(t1, t2, combiner):

"""
>>> a = Tree(1, [Tree(2, [Tree(3)])])
>>> b = Tree(4, [Tree(5, [Tree(6)])])
>>> combined = combine_tree(a, b, mul)
>>> combined.value
4
>>> combined.branches[0].value
10
>>> combined
Tree(4, [Tree(10, [Tree(18)])])
"""

Solution:
combined = [combine_tree(b1, b2, combiner) for b1, b2

in zip(t1.branches, t2.branches)]
return Tree(combiner(t1.value, t2.value), combined)

Alternate solution without using zip:
combined = []
for i in range(len(t1.branches)):

combined.append(combine_tree(t1.branches[i], t2.
branches[i], combiner))

return Tree(combiner(t1.value, t2.value), combined)

Data C88C Fall 2022


