
ITERATORS AND GENERATORS 11
DATA C88C

November 16, 2022

1 Iterators

1.1 Introduction

An iterable is a data type which contains a collection of values which can be processed
one by one sequentially. Some examples of iterables we’ve seen include lists, tuples,
strings, and dictionaries. In general, any object that can be iterated over in a for loop
can be considered an iterable.

Often we want to access the elements of an iterable, one at a time. We find ourselves
writing lst[0], lst[1], lst[2], and so on. It would be more convenient if there was
an object that could do this for us, so that we don’t have to keep track of the indices.

This is where iterators come in. Given an iterable, we can call the iter function on that
iterable to return a new iterator object. Each time we call next on the iterator object,
it gives us one element at a time, just like we wanted. Each iterator keeps track of its
position within the iterable. Calling the next function on an iterator will give the current
value in the iterable and move the iterator’s position to the next value.

In this way, the relationship between an iterable and an iterator is analogous to the re-
lationship between a book and a bookmark - an iterable contains the data that is being
iterated over, and an iterator keeps track of your position within that data.

Once an iterator has returned all the values in an iterable, subsequent calls to next on
that iterable will result in a StopIteration exception. In order to be able to access the
values in the iterable a second time, you would have to create a second iterator.



DISCUSSION 11: ITERATORS AND GENERATORS Page 2
Here is an example of using an iterator:
>>> lst = [5, 6, 7]
>>> lst_iterator = iter(lst)
>>> next(lst_iterator)
5
>>> next(lst_iterator)
6
>>> lst_iterator_2 = iter(lst)
>>> next(lst_iterator_2)
5
>>> next(lst_iterator)
7
>>> next(lst_iterator)
StopIteration

Notice that lst_iterator and lst_iterator_2 each go through the list separately.
At the time of creating lst_iterator_2, even though lst_iterator has gone through
5 and 6, lst_iterator_2 restarts at the beginning with 5.

1.2 Iterators in For Loops

We have already been using iterables to go through the elements of a sequence. This
happens all the time in for loops. For example:
>>> for n in [1, 2, 3]:
... print(n)
1
2
3

This works because the for loop implicitly creates an iterator using the iter method.
Python then repeatedly calls next repeatedly on the iterator, until it raises StopIteration.
In other words, the loop above is (basically) equivalent to:

iterator = iter([1, 2, 3])
try:

while True:
n = next(iterator)
print(n)

except StopIteration:
pass

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 3
1.3 Writing an Iterator Class

As a reminder, an iterator is an object that tracks the position in a sequence of values in
order to provide sequential access. It returns elements one at a time and is only good for
one pass through the sequence. The following is an example of a class that implements
Python’s iterator interface using two special methods __next__ and __iter__. This
iterator calculates all of the natural numbers one-by-one, starting from zero:

class Naturals:
def __init__(self):

self.current = 0

def __next__(self):
result = self.current
self.current += 1
return result

def __iter__(self):
return self

The __iter__ method returns an iterator object. If a class implements both a __next__
method and an __iter__ method, its __iter__ method can simply return self as the
class itself is an iterator.

The __next__ method checks if it has any values left in the sequence; if it does, it com-
putes the next element. To return the next value in the sequence, the __next__ method
keeps track of its current position in the sequence. In the Naturals class, we use self.
current to save the position.

If there are no more values left to compute, the __next__method must raise an exception
called StopIteration. This signals the end of the sequence. The __next__ method
defined in the Naturals class above does not raise StopIteration because there is no
“last natural number”.

Python has built-in functions called next and iter that call __next__ and __iter__
respectively. This is how we could use the Naturals iterator:
>>> nats = Naturals()
>>> next(nats)
0
>>> next(nats)
1
>>> next(nats)
2

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 4
1.4 Questions

1. What would Python display? If a StopIteration Exception occurs, write StopIteration,
and if another error occurs, write Error.

Solution: It can be helpful to refer back to the iter example on the page 2. Re-
member that calling iter returns something that you can call next on. The rest
of the challenge in this problem is just keeping track of where you currently are in
the sequence. Video walkthrough

>>> lst = [[1, 2]]
>>> i = iter(lst)
>>> j = iter(next(i))
>>> next(j)

Solution:
1

>>> lst.append(3)
>>> next(i)

Solution:
3

>>> next(j)

Solution:
2

>>> next(i)

Solution:
StopIteration

2. What would Python display? If a StopIteration Exception occurs, write StopIteration,
and if another error occurs, write Error.
>>> lst = ['data', 88, 'c']
>>> next(lst)

Data C88C Fall 2022

https://www.youtube.com/watch?v=Scz50qHjzXM&list=PLx38hZJ5RLZccXWDLoOVdTsx8VT60WYgn&index=3


DISCUSSION 11: ITERATORS AND GENERATORS Page 5

Solution:
Error

>>> lst_iter = iter(lst)
>>> next(lst_iter)

Solution:
'data'

>>> next(lst_iter)

Solution:
88

>>> next(iter(lst))

Solution:
'data'

>>> [x for x in lst_iter]

Solution:
['c']

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 6
3. Create an iterator that generates the sequence of Fibonacci numbers. The Fibonacci

sequence starts with 0 and 1, and then all subsequent numbers are formed by adding
the two previous numbers together. The first ten numbers of the Fibonacci sequence
are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34.
class FibIterator:

def __init__(self):

Solution:
self.current = 0
self.next = 1

def __next__(self):

Solution:
old_current = self.current
self.current = self.next
self.next = old_current + self.current
return old_current

def __iter__(self):
return self

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 7
4. Implement an iterator class called Filter. The init method for Filter takes an

iterable and a one-argument function fn that either returns True or False. The Filter
iterator only contains elements of the iterable for which the predicate function fn
returns True. Do not use a generator in your solution.
class Filter:

"""
>>> is_even = lambda x: x % 2 == 0
>>> for elem in Filter(range(5) , is_even):
... print(elem)
0
2
4
>>> all_odd = [2*y-1 for y in range (5)]
>>> all_odd
[-1, 1, 3, 5, 7]
>>> for elem in Filter(all_odd, is_even):
... print(elem) # No elements are even, so nothing is

printed
>>> s = Filter(naturals(), is_even)
>>> next(s)
2
>>> next(s)
4
"""
def __init__(self, iterable, fn):

Solution:
self.iterator = iter(iterable)
self.fn = fn

def __iter__(self):

Solution:
return self

def __next__(self):

Solution:
candidate = next(self.iterator)
while not self.fn(candidate):

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 8

candidate = next(self.iterator)
return candidate

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 9

2 Generators

2.1 Introduction

Generators can be used to create iterators as well. Generators are functions that use a
yield statement instead of return. When a generator function is called, the body of
the function is not evaluated yet. Instead, a generator object, which is a type of iterator,is
created and is the return value of the function call. The elements of this iterator are the
yielded values of the function.

>>> square = lambda x: x*x
>>> def get_squares(s):
... for x in s:
... yield square(x)
>>> square_iter = get_squares([1, 2, 3])
>>> next(square_iter)
1
>>> next(square_iter)
4
>>> next(square_iter)
9
>>> next(square_iter)
StopIteration

The yield statement is similar to a return statement. However, while a return state-
ment closes the current frame after the function exits, a yield statement causes the frame
to be saved until the next time next is called, which allows the generator to automatically
keep track of the iteration state.

Once next is called again, execution resumes where it last stopped and continues until
the next yield statement or the end of the function. A generator function can have
multiple yield statements.

Including a yield statement in a function automatically tells Python that this function
will create a generator. When we call the function, it returns a generator object instead of
executing the body. When the generator’s next method is called, the body is executed
until the next yield statement is executed.

2.2 Yielding From an Iterable

When yield from is called on an iterator, it will yield every value from that iterator.
It’s similar to doing the following:

for x in an_iterator:
yield x

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 10
yield from can be used in conjunction with other yield and yield from statements.

>>> square = lambda x: x*x
>>> def many_squares(s):
... for x in s:
... yield square(x)
... yield from [square(x) for x in s]
... yield from map(square, s)
...
>>> list(many_squares([1, 2, 3]))
[1, 4, 9, 1, 4, 9, 1, 4, 9]

Note: When the list function in Python receives an iterator, it calls the next function on
the input until it raises a StopIteration. It puts each of the elements from the calls to
next into a new list and returns it.

2.3 Using Generators in a Class

We can make our own classes iterable using the __iter__ method, which returns an it-
erator object. Because generators are technically iterators, you can implement __iter__
methods using them. For example:

class Naturals:
def __iter__(self):

current = 0
while True:

yield current
current += 1

Naturals’s __iter__method now returns a generator object. The behavior of Naturals
is almost the same as before:

>>> nats = Naturals()
>>> nats_iterator1 = iter(nats)
>>> next(nats_iterator1)
0
>>> next(nats_iterator1)
1
>>> nats_iterator2 = iter(nats)
>>> next(nats_iterator2)
0

In this example, we can iterate over the same object more than once by calling iter multi-
ple times. Note that nats is an iterable object and the nats_iterator’s are generators.

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 11
2.4 Questions

1. What would Python display? If a StopIteration Exception occurs, write StopIteration,
or if another error occurs, write Error.
>>> def weird_gen(x):
... if x % 2 == 0:
... yield x * 2
... else:
... yield x
... yield from weird_gen(x - 1)
>>> next(weird_gen(2))

Solution:
4

>>> list(weird_gen(3))

Solution:
[3, 4]

>>> def greeter(x):
... while x % 2 != 0:
... print('hello!')
... yield x
... print('goodbye!')
>>> greeter(5)

Solution:
<generator object greeter at ...>

>>> gen = greeter(5)
>>> next(gen)

Solution:
hello!
5

>>> next(gen)

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 12

Solution:
goodbye!
hello!
5

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 13
2. Implement a generator function called filter(iterable, fn) that only yields

elements of iterable for which fn returns True.
def filter(iterable, fn):

"""
>>> is_even = lambda x: x % 2 == 0
>>> list(filter(range(5), is_even))
[0 , 2 , 4]
>>> all_odd = [2*y-1 for y in range (5)]
>>> list(filter(all_odd, is_even))
[]
>>> s = filter(naturals(), is_even)
>>> next(s)
2
>>> next(s)
4
"""

Solution:
for elem in iterable:

if fn(elem):
yield elem

3. Write a generator function gen_all_items that takes a list of iterators and yields
items from all of them in order.
def gen_all_items(lst):

"""
>>> nums = [[1, 2], [3, 4], [[5, 6]]]
>>> num_iters = [iter(lst) for lst in nums]
>>> list(gen_all_items(num_iters))
[1, 2, 3, 4, [5, 6]]
"""

Solution:
for it in lst:

yield from it

The yield from solution is nice and short. But this can also be done with just
yield:

for it in lst:
for x in it:

yield x

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 14

Notice that this function will not yield out of deep lists. That is, it will keep the
brackets around deep lists and yield them together instead of one element at a
time.

For an extra challenge, figure out how to yield deep list items! (so the example in
the doctest would return [1, 2, 3, 4, 5, 6])

4. Write a generator function combiner that combines two input iterators using a given
combiner function. The resulting iterator should have a size equal to the size of the
shorter of its two input iterators.

def combiner(iterator1, iterator2, combiner):
"""
>>> from operator import add
>>> evens = combiner(iter(Naturals()), iter(Naturals()), add)
>>> next(evens)
0
>>> next(evens)
2
>>> next(evens)
4
"""

Solution:
while True:

yield combiner(next(iterator1), next(iterator2))
While this is the most compact solution, it may not be immediately obvious that we
would arrive at this. It’s acceptable to start with the “basic skeleton” of all generators:

while True:
<do some work here>
yield <something>
<do some other work here>

From this, we put in some basic steps:
• We want to fetch the next item from both our iterators.
• Then, we would want to combine them using our combiner function.
• Finally, we want to yield the result (be very careful not to return!).

while True:
n1 = next(iterator1)
n2 = next(iterator2)
result = combiner(n1, n2)
yield result

Data C88C Fall 2022



DISCUSSION 11: ITERATORS AND GENERATORS Page 15
5. What is the result of executing this sequence of commands?
>>> nats = iter(Naturals())
>>> doubled_nats = combiner(nats, nats, add)
>>> next(doubled_nats)

Solution: 1

>>> next(doubled_nats)

Solution: 5

Solution: The same naturals iterator has been fed into combiner twice. So the
first yield will get the first two numbers out of naturals, the second yield will the
the third and fourth numbers, and so on.

• 0 + 1 = 1

• 2 + 3 = 5

If you expected this to return 0 then 2, think about what would need to be changed
in how we use combiner. Also, let’s assume we don’t want to change the be-
haviour of the combiner function.

Video walkthrough

Data C88C Fall 2022

https://www.youtube.com/watch?v=2WRsGzuR7tA&list=PLx38hZJ5RLZccXWDLoOVdTsx8VT60WYgn&index=5

