
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lecture 2:
Abstraction and Functions

Announcements

• Join the EECS 101 and DATA 001 Ed Discussions!
• https://eecs.link/join-ed
•https://eecs.link/data-ed

•Hopefully not needed! Please, report any concerns about class /
campus climate to the department. You are welcome here!
•https://eecs.link/climate

3

https://eecs.link/join-ed
https://eecs.link/data-ed
https://eecs.link/climate

Announcements – Waitlist and Exams

•We are working to expand the course.
•Usually 10-15% people get off the waitlist.
•This year it keeps growing. L
•Keep up with the class!

•Section Signups Released Yesterday
•Please sign up and attend a regular section
• Megasection: Useful if you want a little less interactivity.
• We will track attendance, but not for a grade!

•Exams (reminder):
•Midterm: Tue October 10
•Final: Thu Dec 14

4

Links

•Q&A Thread: https://go.c88c.org/qa2
•Self-Check: https://go.c88c.org/2
• Website Google Calendar: https://c88c.org/fa23/weekly-
schedule.html

5

https://go.c88c.org/qa2
https://go.c88c.org/2
https://c88c.org/fa23/weekly-schedule.html
https://c88c.org/fa23/weekly-schedule.html

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Abstraction

Abstraction

•Detail removal
“The act of leaving out of
consideration one or more
properties of a complex object so
as to attend to others.”

•Generalization

“The process of formulating
general concepts by abstracting
common properties of instances”

•Technical terms: Compression,
Quantization, Clustering,
Unsupervized Learning

7

Henri Matisse “Naked Blue IV”

Experiment

8

Where are you from?

Possible Answers:
•Planet Earth
•Europe

•California
•The Bay Area
•San Mateo

•1947 Center Street, Berkeley, CA
•37.8693° N, 122.2696° W

All correct but different levels of abstraction!

Detail Removal (in Data Science)

•You’ll want to look at only the
interesting data, leave out the
details, zoom in/out…

•Abstraction is the idea that you
focus on the essence, the cleanest
way to map the messy real world
to one you can build
•Experts are often brought in to
know what to remove and what to
keep!

The London Underground 1928 Map &
the 1933 map by Harry Beck.

The Power of Abstraction, Everywhere!

•Examples:
•Math Functions (e.g., sin x)
•Hiring contractors
•Application Programming Interfaces
(APIs)
•Technology (e.g., cars)

•Amazing things are built when these
layer
•And the abstraction layers are
getting deeper by the day!

Abstraction Barrier (Interface)
(the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is
actually built, which is done according to
the interface, specification, or contract.

We only need to worry about the
interface, or specification, or contract

NOT how (or by whom) it’s built

Above the abstraction line

Abstraction: Pitfalls

•Abstraction is not universal without
loss of information (mathematically
provable). This means, in the end, the
complexity can only be “moved
around”

•Abstraction makes us
forget how things actually
work and can therefore
hide bias. Example: AI and
hiring decisions.

•Abstractions can formalize a design or
pattern. When something doesn't
follow that pattern–perhaps a new use

Data or Code? Abstraction→ Take CS61C

23

Compiler or Interpreter
Here: Python

Human-readable code
(programming language)

Machine-executable
instructions (byte code)

Computers Are Built On Abstractions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

•Big Idea: Layers of Abstraction
–The GUI look and feel is built out of files, directories, system code, etc.

Review:

•Abstraction:
•Detail Removal or Generalizations

•Code:
•Is an abstraction!

Computer Science is the study (and building) of abstractions

25

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python: Simple Statements

Learning Objectives

•Evaluate Python Expressions
•Call Functions in Python
•Assign data to Variables

27

Let’s talk Python

•Expression 3.1 * 2.6

•Call expression max(0, x)

•Variables my_name

•Assignment Statement my_name = <expression>

•Define Statement: def function_name(<arguments>):
•Control Statements: if …
 for …
 while …

•Comments # Text after the # is ignored.

28

Boolean Expressions

•Booleans are Yes/No values.
•In Python: True and False

•>, <, ==, !=, >=, <=, and, or
•Note the the "double equals"

•These expressions all return only True or False.
•3 < 5 # returns True
•You can write 3 < 5 == True – but this is redundant.

•We'll keep practicing over time

29

Python Statements and Expressions

• A statement is any particular piece of code
• In an expression we care about the return value

print(‘Welcome to C88C!’)
course = ‘C88C’
print(‘Welcome to ‘ + course + ‘!’)
8 * 11
8 + 80

max(88, 61)
len('Berkeley')

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Live Coding Demo

•Open Terminal on the Mac
•Type python3
•We are now in the "interpreter" and can type code.

•Python runs each line of code as we type it.
• After each line, we see a result. This happens only in the
interpreter.

• It's a very useful calculator.
•We can also run files!
•python3 -i 02-Functions.py
• -i : This means open the interpreter after running the file. It's
optional

•python3 ok …
• This runs the file "ok" which is included with each lab / homework.

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python: Function Definitions

Learning Objectives

•Create your own functions.
•Use if and else to control the flow of code.

37

Defining Functions

•Abstracts an expression or set of statements to apply to lots of instances of the
problem
•A function should do one thing well

38

expression

def <function name> (<argument list>) :

return

Functions in Python

•We "define" them with def
•We typically name_them_using_underscores ("Snake case")
•The first line ends in a :
•The body is indented by 4 spaces
•Arguments (parameters) create 'names' that exist only in our
function
•Most functions will return a value, but some do not.

def greet(name):
 print("Hello, " + name)

39

Functions: Example

Let’s write a simple function which returns 8 more than the
number.

We will call this function by writing add_8(80).
Inside, the name num will become the value 80.

def add_8(num):
 ”””add 8 to the input num
 >>> add_8(80)
 88
 “””
 return 8 + num

40

Functions: Example

>>> y = 5
>>> x = 3
>>> z = max(3, 5) * 10
>>> z
50

def max(x, y):
 if x > y:
 return x
 else:
 return y

How to Write a Good Function

•Give a descriptive name
•Function names should be lowercase. If necessary, separate
words by underscores to improve readability. Names are
extremely suggestive!

•Chose meaningful parameter names
•Again, names are extremely suggestive.

•Write the docstring to explain what it does
•What does the function return? What are corner cases for
parameters?

•Write doctest to show what it should do
•Before you write the implementation.

42

Python Style Guide "PEP 8"

https://www.python.org/dev/peps/pep-0008

Live Coding Demo

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions and Environments

Functions: Calling and Returning Results

45

Python Tutor

def max(x, y):
 return x if x > y else y

x = 3
y = 4 + max(17, x + 6) * 0.1
z = x / y

http://pythontutor.com/composingprograms.html

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Iteration With While Loops

Learning Objectives

•Write functions that call functions
•Learn How to use while loops.

47

while Statement – Iteration Control

•Repeat a block of statements until a predicate expression is
satisfied

48

<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

