
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lecture 3:
Functions and Loops

Announcements

Announcements

• Sorry about autograder confusion!
• Labs are based primarily on effort.
•You only need to earn 2/4 to get full credit.
• You still need to get something correct.

• HW is on correctness.
• HW1 was released a little early by accident. L Please re-
download. based

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Process NOT Memorization

• This is not a class about memorization.
• This is a class about problem solving and process.
• You will not know everything, but you will be able to figure it
out.
• Focus on building intuition!
• Predict what will happen first
•Then try and inspect
• Now, Figure out why!
• Was your prediction correct or incorrect?

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python: Definitions and Control

Learning Objectives

•Create your own functions.
•Write a loop to run the same code multiple times
•Use conditionals to control when a loop stops

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Let’s talk Python

•Expression 3.1 * 2.6

•Call expression max(0, x)

•Variables my_name

•Assignment Statement my_name = <expression>

•Define Statement: def function_name(<arguments>):
•Control Statements: if …
 for …
 while …

•Comments # Text after the # is ignored.

7

Variables In Python

•Variables "bind" (or assign) a name to a value (or expression)
•Variables can also come from function arguments
•Python has some specific rules about names…
• Don't memorize them all!
•Mostly: No spaces, use _

• Important: Use meaningful names!
•It's a bit embarrassing to come to OH and try to explain the
purpose of "butt" J (This actually happened!)

•my_favorite_class = 'C88C'

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Functions in Python

•We "define" them with def
•We typically name_them_using_underscores ("Snake case")
•The first line ends in a :
•The body is indented by 4 spaces
•Arguments (parameters) create 'names' that exist only in our
function
•Most functions will return a value, but some do not.
def print_greet(name):
 print("Hello, " + name)
def greet(name):
 return "Hello, " + name

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Aside: String and Text

• Strings, or sequences of text are incredibly common!
• In Python we use ' or ''
•We combine strings with +, or by using string interpolation:
• f-strings allow us to embed an expression inside some text!

def print_greet(name):
 # print("Hello, " + name)
 print(f"Hello, {name}")

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Defining Functions

•Abstracts an expression or set of statements to apply to lots of
instances of the problem
•A function should do one thing well
• arguments become accessible inside the function body.

expression

def <function name> (<argument list>) :

return

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Functions: Example

•>>> y = 5
•>>> x = 3
•>>> z = max(3, 5) * 10
•>>> z
•50

def max(x, y):
 if x > y:
 return (x)
 else:
 return (y)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Returns and Values

•All functions always return SOME value.
• If you don’t specify return, the value is None.
•Using print does not change how the function works, but does
affect the output.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Functions: Calling and Returning Results

Python Tutor

This style is shorthand.
def max(x, y):
 return x if x > y else y

x = 3
y = 4 + max(17, x + 6) * 0.1
z = x / y

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

http://pythontutor.com/composingprograms.html

Doctests

•Write the docstring to explain what it does
•What does the function return? What are corner cases for
parameters?

def max(x, y):
 """Returns the larger value of arguments x and y
 >>> max(6, 0)
 6
 """
 return x if x > y else y
•Write doctest to show what it should do
•Before you write the implementation.
•python3 –m doctest [-v] file.py

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python: Control Flow

Conditional Statement

•Do some statements, conditional on a predicate expression

•Example:

if <predicate>:
 <true statements>
else:
 <false statements>

if temperature > 98.6:
 print(“fever!”)
else:
 print(“no fever”)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Live Coding Demo

course = 'C88C'
time = '2:00'
if time == '2:00':
 print(f"Go to {course}")
else:
 print("Go get some ☕")

Go to C88C

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Iteration with while Loops

Learning Objectives

•Use a while loop to repeat some task.
•Write an expression to control when a while loop stops
executing

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

while Statement – Iteration Control

•Repeat a block of statements until a predicate expression is
satisfied

<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Sum The Numbers

•This is a task we'll see many times!

total = 0
n = 1
while n <= 10:
 total += n
 n += 1
print(total)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Iteration With for Loops

Learning Objectives

•Compare a for loop and a while loop.
•Learn to use range()
•Use a string as a sequence of letters

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

for Statement – Iteration Control

•Repeat a block of statements for a structured sequence of
variable bindings

<initialization statements>

for <variables> in <sequence expression>:
 <body statements>

<rest of the program>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

<sequence expression> — What's that?

•Sequences are a type of data that can broken down into smaller
parts.
•Common sequences:
•range() – give me all the numbers
•Strings, e.g, "Hello, C88C!"
• What is it a sequence of? Characters!

•lists (next!)
•We'll start with two basic facts:
• range(10) is the numbers 0 to 9, or range(0, 10)
• [] means "indexing" an item in a sequence.
• "Hello"[0] == "H"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Data-Driven Iteration

•describe an expression to perform on each item in a sequence
• let the data dictate the control

[<expr with loop var> for <loop var> in <sequence expr >]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

