
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lecture 4: Sequences and for Loops

Announcements

Concurrent Enrollment / BGA Students:
 - Working on expanding the class, should happen next week

Lab Autograders:
You only need 2/4 for full credit.

Please do the welcome survey

https://go.c88c.org/welcome

Assignments And Extensions

•Everyone gets 9 slip days – use them!
•https://go.c88c.org/extensions
• For exceptional circumstances.
• Please don't request for < 3 days.
• Don't request for Lab 0

• If you've joined late, please request extensions if necessary

https://go.c88c.org/chat
https://c88c.org/fa22 -- previous slides

https://go.c88c.org/extensions
https://go.c88c.org/chat
https://c88c.org/fa22

CITN: “The YouTube Effect” Screening & Panel Discussion

Thurs, September 14, 2023
2:00 pm to 5:00 pm
Banatao Auditorium, Sutardja Dai Hall, UC Berkeley
SPONSORED BY THE SCHOOL OF INFORMATION AND THE CITRIS POLICY LAB

Join us for a screening of the new film The YouTube Effect, followed by a panel
discussion with the filmmaker, Alex Winter, and a panel of Berkeley experts.
About the Film
The YouTube Effect, a documentary by Alex Winter, had its world premiere at the
Tribeca Festival. The film takes viewers on a timely and gripping journey inside the
cloistered world of YouTube and parent Google.
The film, presented by Olive Hill Media and produced by Valhalla Entertainment,
Trouper Productions and Zipper Bros., investigates YouTube’s rise from humble
beginnings in the attic of a pizzeria to its explosion onto the world stage, becoming the
largest media platform in history and sparking a cultural revolution, while creating
massive controversy in the age of disinformation.

Watch Trailer (on YouTube!)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.ischool.berkeley.edu/events/2023/youtube-effect-screening-panel-discussion
https://www.ischool.berkeley.edu/events/2023/youtube-effect-screening-panel-discussion
https://www.ischool.berkeley.edu/events/2023/youtube-effect-screening-panel-discussion
https://alexwinter.com/projects/youtube-effect/
https://www.youtube.com/watch?v=Oo2EWOU6J6U&embeds_referring_euri=https%3A%2F%2Fwww.ischool.berkeley.edu%2F&source_ve_path=Mjg2NTgsMjM4NTE&feature=emb_title

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

for Loops

Learning Objectives: Using Lists in Practice

•for Loops are a ”generic” way to iterate over data.
• Compare a for loop and a while loop.
• Learn to use range()
• Use a string as a sequence of letters

6

REVIEW: while statement – iteration control

•Repeat a block of statements until a predicate expression is satisfied
<initialization statements>

while <predicate expression>:
 <body statements>

<rest of the program>

Equivalent to a for loop:
text = "Hello, C88C!"
index = 0
while index < len(text):
 letter = text[index]
 print(letter)
 index += 1

for Statement – Iteration Control

•Repeat a block of statements for a structured sequence of variable
bindings

<initialization statements>

for <variables> in <sequence expression>:
 <body statements>

<rest of the program>

Live Coding Demo

text = "Hello, C88C!"

index = 0

while index < len(text):

 letter = text[index]

 print(letter)

 index += 1

for letter in text:

 print(letter)

Live Coding Demo

index = 0

while index < 10:

 print(index)

 index += 1

for index in range(0, 10):

 print(index)

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sequences

<sequence expression> — What's that?

•Sequences are a type of data that can broken down into smaller
parts.
•Common sequences:
•range() – gimme all the numbers
•strings
•lists (next!)

•We'll start with two basic facts:
•range(10) is the numbers 0 to 9, or range(0, 10)
•[] means "indexing" an item in a sequence.
•"Hello"[0] == "H"

12

Live Coding Demo

13

Learning Objectives

•Lists are a type of sequence
•There are many types of sequences in Python.
•range
•string
•tuples

•Sequences all share some common properties.

14

Sequences

•The term sequence refers generally to a data
structure consisting of an indexed collection of
values, which we’ll generally call elements.
•That is, there is a first, second, third value (which CS types call #0,
#1, #2, etc.)

•A sequence may be finite (with a length) or infinite.
•It may be mutable (elements can change) or
immutable.
•It may be indexable: its elements may be accessed via
selection by their indices.
•It may be iterable: its values may be accessed
sequentially from first to last.

15

range

•range() is a built in Python tool that generates a sequence of
numbers.
•It does not return a list unless we explicitly ask for one.

• It has many options: start, stop, and step.
• Range is lazy! It can be iterated over, but doesn’t compute all its
values at once.
•We’ll revisit this later.

•GOTCHA: Range is exclusive in the last value!
•range(10) is a sequence on 10 numbers from 0 to 9.

•https://docs.python.org/3.7/library/stdtypes.html?hi
ghlight=range#range

https://docs.python.org/3.7/library/stdtypes.html?highlight=range
https://docs.python.org/3.7/library/stdtypes.html?highlight=range

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lists

Learning Objectives

•Lists are a new data type in Python.
•Lists can store any kind of data and be any length.
•We start counting items of lists at 0.
•Lists are mutable. We can change their data!

Lists

•A structure in Python that can hold many elements
•Also referred to an an “array” in other programming
languages.

•Lists are used to group similar items together.
•A “contact list”, a “list of courses”, a “to do list”
•Python lists are really flexible!
•Can contain any type of data
•Can mix and match types!
•Can add and delete items

Types We’ve Learned So Far

•Each type of data has a specific set of functions (methods) you can
apply to them, and certain properties you can access.
•int / Integers

• 1, -1, 0, …
• float (“decimal numbers”)

• 1.0, 3.14159, 20.0
• string

• "Hello, CS88"
•function

•max(), min(), print(), your own functions!
• list

• ['CS88', 'DATA8', 'POLSCI2', 'PHILR1B’]

List Operations [Python Docs!]

•[] ”square brackets”: Used to access items in a list. We start at 0!
• len(): The number of items in a list
•+: We can add lists together
•min(), max(): Functions that take in a list and return some info.
•Converting between types: Strings and Lists:
•<string>.split(<separator>) → List of strings
•'I am taking CS88.'.split(' ')

•<string>.join(<list>) → String, with the items of a list
joined together.
•' '.join(['I', 'am', 'taking', 'C88C.'])

•Lots more interesting tools!

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/tutorial/datastructures.html

Selecting Elements From a List (A Reference, Don't Memorize Yet!)

• Selection refers to extracting elements by their index.
• Slicing refers to extracting subsequences.
• These work uniformly across sequence types.
L = [2,0,9,10,11]
S = "Hello, world!"
L[2]== 9
L[-1] == L[len(t)-1] == 11
S[1] == "e" # Each element of a string is a one-element
string.
L[1:4] == (L[1], L[2], L[3]) == (0, 9, 10)
S[1:2] == S[1] == "e"
S[0:5] == "Hello", S[0:5:2] == "Hlo", S[4::-1] ==
"olleH"

Rules of Indexing & Slicing

•We start counting from 0.
•You will mess this up. We all do. It's ok.
•There's lots of bad dad jokes about this. J

•Python provides flexibility, but can be confusing.
•[0] means the first item
•[-1] means the last item, [-2] 2nd to last, and so on

•Slicing: The last value is exclusive!
•[:stop], e.g. my_list[:5] # items 0-4
•[start:stop], e.g. my_list[2:5] # items 2,3,4
•[start:stop:step] e.g. my_list[0:8:2] # items
0,2,4,6

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

24

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

List Comprehensions

Learning Objectives

•List comprehensions let us build lists "inline".
•List comprehensions are an expression that returns a list.
•We can easily “filter” the list using a conditional
expression, i.e. if

26

Data-driven iteration

•describe an expression to perform on each item in a sequence
• let the data dictate the control
• In some ways, nothing more than a concise for loop.

[<expr with loop var> for <loop var> in <sequence expr >]

[<expr with loop var> for <loop var> in <sequence expr >
if <conditional expression with loop var>]

