
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lists & Higher Order Functions

Announcements

•Please don't email directly for extensions. J
•https://go.c88c.org/extensions

• If you're on the waitlist, you should be enrolled
• 61A Students: Request extensions as necessary.
• You will need to resubmit assignments. (Sorry! But it won't be too
hard.)

•Questions During Lecture:
• https://go.c88c.org/qa6
• Self-Check: https://go.c88c.org/6

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://go.c88c.org/extensions
https://go.c88c.org/qa6
https://go.c88c.org/6

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

HOFs That Operate on Sequences

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce

•These each apply a function to a sequence (list) of data
•They are "lazy" so we may need to call list()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional List Operations

•Goal: Transform a list, and return a new result
•We'll use 3 functions that are hallmarks of functional
programming
•Each of these takes in a function and a sequence

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a

new item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item,
and the previous
result)

Type should
match the type
each item

A "single" item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why Learn HOFs this way?

•Break a complex task into many smaller
parts
• Small problems are easier to solve
• They're easier to understand and debug

•Directly maps to transforming data in lists
and tables
• map: transformations, apply
• filter: selections, where
• reduce: aggregations, groupby

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

•Map: Transform each item
•Input: A function and a sequence
•Output: A sequence of the same length. The items may be
different.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Higher Order Functions:
map

list(map(function_to_apply, list_of_inputs))

Transform each of items by a function.
 e.g. square()
Inputs (Domain):
 • Function
 • Sequence
Output (Range):
 • A sequence
Simplified Implementation
def map(function, sequence):
 return [function(item) for item in sequence]

list(map(square, range(10)))

map(function, sequence)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lists & Higher Order Functions:
Filter

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce

•These each apply a function to a sequence (list) of data
•map/filter are "lazy" so we may need to call list()

•Filter: Keeps items matching a condition.
• Input: A function and sequence
•Output: A sequence, possibly with items removed. The items
don't change.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

FILTER

list(filter(function, list_of_inputs))

Keeps each of item where the function is
true.
Inputs (Domain):
 • Function
 • Sequence
Output (Range):
 • A sequence

Simplified implementation
def filter(function, sequence):
 return [item for item in sequence if function(item)]

filter(is_even, range(10))

filter(function, sequence)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lists & Higher Order Functions
Reduce

Learning Objectives

•Learn three new common Higher Order Functions:
•map, filter, reduce

•These each apply a function to a sequence (list) of data

•Reduce: “Combines” items together, probably doesn’t return a
list.
•Input: A 2 item function and a sequence
•A single value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

REDUCE

Successively combine items of our sequence
 • function: add(), takes 2 inputs gives us 1 value.
Inputs (Domain):
 • Function, with 2 inputs
 • Sequence
Output (Range):
 • An item, the type is the output of our function.

Note: We must import reduce from functools!
Simplified implementation
def reduce(function, sequence):
 result = function(sequence[0], sequence[1])
 for index in range(2, len(sequence)):
 result = function(result, sequence[index])
 return result

reduce(function, list_of_inputs)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Reduce is an aggregation!

• Reduce aggregates or combines data
• This is commonly called "group by"
• In Data 8:
• sum over a range of values
• joining multiple cells into 1 array
• calling max(), min() etc. on a column

• We'll revisit aggregations in SQL

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lists & Higher Order Functions
Acronym

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UCB"

def acronym(sentence):
 """YOUR CODE HERE"""

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UCB"
def acronym(sentence):
 """ (Some doctests)
 """
 words = sentence.split()
 return reduce(add, map(first_letter, filter(long_word,
words)))

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Acronym With HOFs

What is we want to control the filtering method?

def keep_words(word):
 specials = ['Los']
 return word in specials or long_word(word)

def acronym_hof(sentence, filter_fn):
 words = sentence.split()
 return reduce(add, map(first_letter,
filter(filter_fn, words)))

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

list(map(function_to_apply, list_of_inputs))

list(filter(condition, list_of_inputs))

Applies function to each element of the list

Returns a list of elements for which the
condition is true

reduce(function, list_of_inputs)
Applies the function, combining items of the
list into a "single" value.

* For the builtin filter/map, you need to then call list on it to get a list.
If we define our own, we do not need to call list

Three super important HOFS

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional Sequence Operations

•Goal: Transform a list, and return a new result
•We'll use 3 functions that are hallmarks of functional
programming
•Each of these takes in a function and a sequence

Function Action Input arguments Input Fn. Returns Output

map Transform every
item 1 (each item) "Anything", a

new item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are
the same

reduce "Combine" items
together

2 (current item,
and the previous
result)

Type should
match the type
each item

A "single" item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions That Make Functions

Learning Objectives

•Learn how to use and create higher order functions:
•Functions can be used as data
•Functions can accept a function as an argument
•Functions can return a new function

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: What is a Higher Order Function?

•A function that takes in another function as an argument

OR

•A function that returns a function as a result.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def leq_maker(c):
 def leq(val):
 return val <= c
 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> [x for x in range(7) if leq_maker(3)(x)]
[0, 1, 2, 3]

Higher Order Functions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo – leq_maker

•PythonTutor Link

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html

Demo - compose

Python Tutor Link

def compose(f, g):
 def h(x):
 return f(g(x))
 return h

add_5 = compose(add_2, add_3)
y = add_5(7)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/cp/composingprograms.html

