
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

HOFs & Environment Diagrams

Announcements

• Reminder: Please to request extensions if <= 3 days
• Gradescope / Grading:
• If you run into issues, please resubmit (once…)
• When you post on Ed, please include a link to the submission.
• Remember to run okpy on your computer!
• python3 ok --all
• python3 ok --all –interactive
• (Demo time)

• Maps project out soon!
• Recommended: Find a Partner!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

HOFs and Sequences

Today’s Task: Acronym

Input: "The University of California at Berkeley"

Output: "UCB"
def acronym(sentence):
 """ (Some doctests)
 """
 words = sentence.split()
 return reduce(add, map(first_letter, filter(long_word,
words)))

P.S. Pedantry alert: This is really an initialism but that's rather
annoying to say and type. J (However, the code we write is the
same, the difference is in how you pronounce the result.) The more
you know!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Acronym With HOFs

What is we want to control the filtering method?

def keep_words(word):
 specials = ['Los']
 return word in specials or long_word(word)

def acronym_hof(sentence, filter_fn):
 words = sentence.split()
 return reduce(add, map(first_letter,
filter(filter_fn, words)))

acronym_hof(copycats, keep_words)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functional Sequence (List) Operations

•Goal: Transform a sequence, and return a new result
•We'll use 3 functions that are hallmarks of functional programming
•Each of these takes in a function and a sequence as arguments

Function Action Input arguments Input Fn. Returns Output

map Transform every item 1 (each item) "Anything", a new
item

List: same length,
but possibly new
values

filter Return a list with
fewer items 1 (each item) A Boolean

List: possibly fewer
items, values are the
same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions That Return Functions

Learning Objectives

•Learn how to use and create higher order functions:
•Functions can be used as data
•Functions can accept a function as an argument
•Functions can return a new function

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: What is a Higher Order Function?

•A function that takes in another function as an argument

OR

•A function that returns a function as a result.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def leq_maker(c):
 def leq(val):
 return val <= c
 return leq

>>> leq_maker(3)
<function leq_maker.<locals>.leq at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> [x for x in range(7) if leq_maker(3)(x)]
[0, 1, 2, 3]

Higher Order Functions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Environment Diagrams

Environment Diagrams

•Organizational tools that help you understand code
•Terminology:
•Frame: keeps track of variable-to-value bindings, each function call
has a frame
•Global Frame: global for short, the starting frame of all python
programs, doesn’t correspond to a specific function
•Parent Frame: The frame of where a function is defined (default
parent frame is global)
•Frame number: What we use to keep track of frames, f1, f2, f3, etc
•Variable vs Value: x = 1. x is the variable, 1 is the value

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Environment Diagrams Rules

1. Always draw the global frame first
2. When evaluating assignments (lines with single equal), always evaluate right

side first
3. When you CALL a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the

value in the box
5. When assigning anything else (lists, functions, etc.), draw an arrow to the

value
6. When calling a function, name the frame with the intrinsic name – the name

of the function that variable points to
7. The parent frame of a function is the frame in which it was defined in (default

parent frame is global)
8. If the value for a variable doesn’t exist in the current frame, search in the

parent frame
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #1

def make_adder(n):
 def adder(k):
 return k + n
 return adder

n = 10
add_2 = make_adder(2)
x = add_2(5)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #2

a = "chipotle"
b = 5 > 3
c = 8

def foo(c):
 return c - 5

def bar():
 if b:
 a = "taco bell"

result1 = foo(10)
result2 = bar() Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Python Tutor Example #3

add_2 = make_adder(2)
add_3 = make_adder(3)

x = add_2(2)
def compose(f, g):
 def h(x):
 return f(g(x))
 return h

add_5 = compose(add_2, add_3)
z = add_5(x)

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Example 1:
•make_adder Higher Order Function: Environment Diagram Python Tutor Link
Example 2:
•Primitives and Functions: Environment Diagram Python Tutor:
Example 3:
•Compose Python Tutor Link

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html
https://pythontutor.com/composingprograms.html

Environment Diagram Tips / Links

•NEVER draw an arrow from one variable to another.
•Useful Resources:
•http://markmiyashita.com/cs61a/environment_diagrams/rules_of_e
nvironment_diagrams/
•http://albertwu.org/cs61a/notes/environments.html

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why focus on environments?

• Environments are a simplification of why Python actually does
• Focus on building intuition for what will happen when you run code
• Sometimes tedious, but the practice helps you solve hard questions
• In 88C (or 61A), even our hard questions are pretty short
• Outside of class, things can get complex quickly.

• Every programming language is a bit different, but these rules are
quite common

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

