Computational Structures in Data Science

Lambdas
Environments
Dictionaries

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Announcements

-Reminder: Check Ed for links/forms for Extensions and switching for CS61A



Computational Structures in Data Science

Lambda Expressions

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Learning Objectives

-Lambda are anonymous functions, which are expressions
-Don’t use return, lambdas always return the value of the
expression.
-They are typically short and concise
-They don't have an “intrinsic” name when using an environment
diagram.
- Their name is the character A



Why Use lambda?

- We often can use the behavior of simple function!
- Using functions gives us flexibility

- "Inline" functions are faster/easier to write, and sometimes require
less reading.

- They're not "reusable”, but that's OK!



Function expression

“anonymous” function creation

lambda <arg or arg_tuple> : <expression using args>

Expression, not a statement, no return or any other statement

add one = lambda v : v + 1 def add one(v):
return v + 1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Examples

>>> def make adder (1):

return lambda x: x+1i

>>> make adder (3)

<function make adder.<locals>.<lambda> at
0x10073c510>

>>> make adder (3) (4)
.

>>> list (map (make adder (3), [1,2,3,41))
(4, 5, 6, 7]

>>>
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Lambda with HOFs

« A function that returns (makes) a function

def leq maker(c):
return lambda val: val <= c

>>> leq maker (3)
<function leq maker.<locals>.<lambda> at 0x1019d8c80>

>>> leq maker (3) (4)
False

>>> filter (leq maker(3), [0,1,2,3,4,5,6,7])
(o, 1, 2, 3]



Sorting Data

- It is often useful to sort data.
-What property should we sort on?
- Numbers: We can clearly sort.
-What about the length of a word?
-Alphabetically?
-What about sorting a complex data set, but 1 attribute?

- Image | have a list of courses: | could sort be course name, number of
units, start time, etc.

- Python provides 1 function which allows us to provide a lambda to
control its behavior



More Python HOFs

« sorted — sorts a list of data
« Min
¢ Max

All three take in an optional argument called key which allows us to
control how the function performs its action. They are more similar to
filter than map.

max([1,2,3,4,5], key = lambda x: -x)
key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape", "KIWI", "APPLE",
"melon", "ORANGE", "BANANA'"]

sorted(key=lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Sorting with Lambdas

>>> sorted([1,2,3,4,5], key = lambda x: x)

[1, 2, 3, 4, 5]
>>> sorted([1,2,3,4,5], key = lambda x: -x)

[5, 4, 3, 2, 1]
# Nonsensical pairing of numbers and words..
>>> sorted([(2, "hi"), (1, "how"), (5, '"goes"), (7, "it")],
key = lambda x:x[0])
[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'it')]
>>> sorted([(2, "hi"), (1, "how"), (5, '"goes"), (7, "it")],
key = lambda x:x[1])
[(7, 'it'), (5, 'goes'), (2, 'hi'), (1, '"how')]
>>> sorted([(2,"hi"),(1,"how"), (5,"goes"), (7,"it")],
key = lambda x: len(x[1]))
[(7, 'it"'), (2, 'hi'), (1, 'how'), (5, 'goes')]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Environment Diagrams

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Revisiting Environments

def make_adder (n):
return lambda k: k + n

add_2 = make_adder(2)
add_3 = make_adder (3)
x = add_2(5)
y = add_3(x)

13



Revisiting Environments: compose w/lambda

def make_adder(n):

return lambda k: k + n
def compose(f, g):

return lambda x: f(g(x))

add_2 = make_adder (2)
add_3 = make_adder (3)
add_5 = compose(add_2, add_3)

X = add_2(2)

z = add_5(x)

14



Environment Diagrams

-Organizational tools that help you understand code

- Terminology:

-Frame: keeps track of variable-to-value bindings, each function call
has a frame

-Global Frame: global for short, the starting frame of all python
programs, doesn’t correspond to a specific function

-Parent Frame: The frame of where a function is defined (default
parent frame is global)

-Frame number: What we use to keep track of frames, 1, 12, {3, etc

-Variable vs Value: x = 1. x is the variable, 1 is the value



Environment Diagrams Rules

Always draw the global frame first

2.  When evaluating assignments (lines with single equal), always evaluate right
side first

3. When you CALL a function MAKE A NEW FRAME!

4. When assigning a primitive expression (number, boolean, string) write the
value in the box

5. When assigning anything else (lists, functions, etc.), draw an arrow to the
value

6. When calling a function, name the frame with the intrinsic name — the name
of the function that variable points to

7. The parent frame of a function is the frame in which it was defined in (default
parent frame is global)

8. If the value for a variable doesn’t exist in the current frame, search in the
parent frame

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Demo

Example 1:

-make adder Higher Order Function: Environment Diagram
Python Tutor Link

Example 2:

-Compose Python Tutor Link



https://pythontutor.com/cp/composingprograms.html
https://pythontutor.com/cp/composingprograms.html
https://pythontutor.com/cp/composingprograms.html

Computational Structures in Data Science

Taking a Break

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Computational Structures in Data Science

Dictionaries

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Learning Objectives

-Dictionaries are a new type in Python
- Lists let us index a value by a number, or position.
-Dictionaries let us index data by other kinds of data.

20



Dictionaries

« Constructors:

edict( <list of 2-tuples> )

-dict( <key>=<val>, ...) # like kwargs

-{ <key exp>:<val exp>, .. }

-{ <key>:<val> for <iteration expression> }
>>> {x:y for x,y in zip(["a","b"],[1,2])}
{'a': 1, 'b': 2}

Selectors: <dict>[ <key> ]

- <dict>.keys(), .items(), .values()

- <dict>.get(key [, default] )

- Operations:
- Key in, not in, len, min, max
. <dict>[ <key> ] = <val>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA






Example Dictionary Operations

In [1]:

Out[1l]:

In [2]:

out([2]:

In [3]:

Out[3]:

In [4]):

In [5]:

Out[5]:

In [6]:

Out[6]:

text = "Once upon a time"
d = {word : len(word) for word in text.split()}
d

'time': 4,

{'Once': 4, 'a': 1, ‘upon': 4}

d[ 'Once’ ]

4

d.items()

((‘a', 1), ('time', 4), ('upon', 4), ('Once', 4)]

for (k,v) in d.items():
print(k,"=>",v)

(‘a', '=>', 1)

('time', '=>', 4)
('upon', '=>', 4)
('Once', '=>"', 4)

d.keys()

['a', 'time', 'upon', 'Once’]

d.values

(1, 4, 4, 4]



