
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lambdas
Environments
Dictionaries

Announcements

•Reminder: Check Ed for links/forms for Extensions and switching for CS61A

2

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lambda Expressions

Learning Objectives

•Lambda are anonymous functions, which are expressions
•Don’t use return, lambdas always return the value of the
expression.
•They are typically short and concise
•They don’t have an “intrinsic” name when using an environment
diagram.
• Their name is the character 𝜆

Why Use lambda?

• We often can use the behavior of simple function!
• Using functions gives us flexibility
• "Inline" functions are faster/easier to write, and sometimes require
less reading.
• They're not "reusable", but that's OK!

5

lambda

Function expression
“anonymous” function creation

Expression, not a statement, no return or any other statement

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

lambda <arg or arg_tuple> : <expression using args>

add_one = lambda v : v + 1 def add_one(v):
 return v + 1

Examples

>>> def make_adder(i):

... return lambda x: x+i

...

>>> make_adder(3)

<function make_adder.<locals>.<lambda> at
0x10073c510>

>>> make_adder(3)(4)

7

>>> list(map(make_adder(3), [1,2,3,4]))

[4, 5, 6, 7]

>>> Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

• A function that returns (makes) a function

def leq_maker(c):
 return lambda val: val <= c

>>> leq_maker(3)
<function leq_maker.<locals>.<lambda> at 0x1019d8c80>

>>> leq_maker(3)(4)
False

>>> filter(leq_maker(3), [0,1,2,3,4,5,6,7])
[0, 1, 2, 3]

Lambda with HOFs

Sorting Data

• It is often useful to sort data.
•What property should we sort on?
• Numbers: We can clearly sort.
•What about the length of a word?
•Alphabetically?
•What about sorting a complex data set, but 1 attribute?
• Image I have a list of courses: I could sort be course name, number of
units, start time, etc.

•Python provides 1 function which allows us to provide a lambda to
control its behavior

More Python HOFs

• sorted – sorts a list of data
• min
• max
All three take in an optional argument called key which allows us to
control how the function performs its action. They are more similar to
filter than map.

max([1,2,3,4,5], key = lambda x: -x)
key is the name of the argument and a lambda is its value.

fruits = ["pear", "grape", "KIWI", "APPLE",
"melon", "ORANGE", "BANANA"]
sorted(key=lambda x: x.lower())

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Sorting with Lambdas

>>> sorted([1,2,3,4,5], key = lambda x: x)
 [1, 2, 3, 4, 5]
>>> sorted([1,2,3,4,5], key = lambda x: -x)
 [5, 4, 3, 2, 1]
Nonsensical pairing of numbers and words…
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],
 key = lambda x:x[0])
[(1, 'how'), (2, 'hi'), (5, 'goes'), (7, 'it')]
>>> sorted([(2, "hi"), (1, "how"), (5, "goes"), (7, "it")],
 key = lambda x:x[1])
 [(7, 'it'), (5, 'goes'), (2, 'hi'), (1, 'how')]
>>> sorted([(2,"hi"),(1,"how"),(5,"goes"),(7,"it")],
 key = lambda x: len(x[1]))
 [(7, 'it'), (2, 'hi'), (1, 'how'), (5, 'goes')]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Environment Diagrams

Revisiting Environments

def make_adder(n):
 return lambda k: k + n

add_2 = make_adder(2)
add_3 = make_adder(3)
x = add_2(5)
y = add_3(x)

13

Revisiting Environments: compose w/lambda

def make_adder(n):
 return lambda k: k + n
def compose(f, g):
 return lambda x: f(g(x))

add_2 = make_adder(2)
add_3 = make_adder(3)
add_5 = compose(add_2, add_3)

x = add_2(2)
z = add_5(x)

14

Environment Diagrams

•Organizational tools that help you understand code
•Terminology:
•Frame: keeps track of variable-to-value bindings, each function call
has a frame
•Global Frame: global for short, the starting frame of all python
programs, doesn’t correspond to a specific function
•Parent Frame: The frame of where a function is defined (default
parent frame is global)
•Frame number: What we use to keep track of frames, f1, f2, f3, etc
•Variable vs Value: x = 1. x is the variable, 1 is the value

Environment Diagrams Rules

1. Always draw the global frame first
2. When evaluating assignments (lines with single equal), always evaluate right

side first
3. When you CALL a function MAKE A NEW FRAME!
4. When assigning a primitive expression (number, boolean, string) write the

value in the box
5. When assigning anything else (lists, functions, etc.), draw an arrow to the

value
6. When calling a function, name the frame with the intrinsic name – the name

of the function that variable points to
7. The parent frame of a function is the frame in which it was defined in (default

parent frame is global)
8. If the value for a variable doesn’t exist in the current frame, search in the

parent frame
Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Example 1:
•make_adder Higher Order Function: Environment Diagram
Python Tutor Link

Example 2:
•Compose Python Tutor Link

https://pythontutor.com/cp/composingprograms.html
https://pythontutor.com/cp/composingprograms.html
https://pythontutor.com/cp/composingprograms.html

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Taking a Break

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Dictionaries

Learning Objectives

•Dictionaries are a new type in Python
•Lists let us index a value by a number, or position.
•Dictionaries let us index data by other kinds of data.

20

Dictionaries

•Constructors:
•dict(<list of 2-tuples>)
•dict(<key>=<val>, ...) # like kwargs
•{ <key exp>:<val exp>, … }
•{ <key>:<val> for <iteration expression> }
•>>> {x:y for x,y in zip(["a","b"],[1,2])}
•{'a': 1, 'b': 2}

•Selectors: <dict>[<key>]
•<dict>.keys(), .items(), .values()
•<dict>.get(key [, default])

•Operations:
• Key in, not in, len, min, max
• <dict>[<key>] = <val>

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Dictionary Example

Example Dictionary Operations

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

