
Announcements

• Maps Autograder is (kind of) broken!
• It's no skipping "locked" tests.
• You should run python3 ok -u on your computer.
• If your tests pass locally, you're all set.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Mutable Functions

Learning Objectives

• Remember: Each function gets its own new frame
• Inner functions can access data in the parent environment
• Use an inner function along with a mutable data type to capture
changes

Making Functions that Capture and change state

• We want to make a function, which returns a function that can change
the state.
• Python Tutor Link
def make_counter():
 counter = [0]
 def count_up():
 counter[0] += 1
 return counter
 return count_up
c = make_counter()
print(c)
c()
c()
c()

https://pythontutor.com/cp/composingprograms.html

Functions with Changing State

•Goal: Use a function to repeatedly withdraw from a bank
account that starts with $100.
• Build our account: withdraw =
make_withdraw_account(100)
•First call to the function:
withdraw(25) # 75
•Second call to the function:
withdraw(25) # 50
•Third call to the function:
withdraw(60) # 'Insufficient funds'

How Do We Implement Bank Accounts?

•A mutable value in the parent frame can maintain the local state
for a function.
• View in PythonTutor
def make_withdraw_account(initial):
 balance = [initial]

 def withdraw(amount):
 if balance[0] - amount < 0:
 return 'Insufficient funds'
 balance[0] -= amount
 return balance[0]
 return withdraw

https://pythontutor.com/composingprograms.html

Implementing Bank Accounts

•A mutable value in the parent frame can maintain the local state
for a function.

def make_withdraw_account(initial):
 balance = [initial]

 def withdraw(amount):
 if balance[0] - amount < 0:
 return 'Insufficient funds'
 balance[0] -= amount
 return balance[0]
 return withdraw
View in PythonTutor

https://pythontutor.com/composingprograms.html

Taking This One Step Further

• We can make an account which allows more than just withdraws
• What should our inner function return?
• Could be many things… but what about a function which takes
multiple arguments?

def new_account(initial_balance):
 ## Some code omitted…
 data = { 'balance': initial_balance }
 def do_action(action, value=None):
 if action == 'balance':
 return data['balance']
 elif action == 'withdraw':
 return withdraw(value)
 elif action == 'deposit':
 return deposit(value)
return do_action Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Abstract Data Types

Abstract Data Type

•Uses pure functions to encapsulate some logic as part
of a program.
•We rely of built-in types (int, str, list, etc) to build ADTs
•This is a contrast to object-oriented programming
•Which is coming soon!

Creating Abstractions

•Compound values combine other values together
•date: a year, a month, and a day
•geographic position: latitude and longitude
•a game board

•Data abstraction lets us manipulate compound values as units
• Isolate two parts of any program that uses data:
•How data are represented (as parts)
•How data are manipulated (as units)

•Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

18

Why Abstract Data Types?

•How do you represent the idea of a game board, a
"course", a person, a student, anything?
• Programming languages allow you to do just about anything!

•“Self-Documenting”
•contact_name(contact)
• vs contact[0]

•“0” may seem clear now, but what about in a week? 3
months?

•Change your implementation
•Maybe today it’s just a Python List
•Tomorrow: It could be a file on your computer; a database
in web

Abstract Data Type

A new Data
Type

Internal
Representation

External
Representation

Constructor
s

Selector
s

Operation
s

Operations Object

Implementation on
that
Internal
representation

Interface
Abstraction Barrier!

C.O.R.E concepts

Comput
e
Operation
s

Representatio
n
Evaluatio
n

Perform useful computations
treating objects abstractly as
whole values and operating on
them.

Provide operations on the
abstract components that
allow ease of use –
independent of concrete
representation.
Constructors and selectors
that provide an abstract
interface to a concrete
representation
Execution on a computing
machine

Ab
st

ra
ct

 D
at

a
Ty

pe

Abstraction
Barrier

Reminder: Lists

•Lists
•Constructors:
• list(…)
•[<exps>,…]
•[<exp> for <var> in <list> [if <exp>]]

•Selectors: <list> [<index or slice>]
•Operations: in, not in, +, *, len, min, max
•Mutable ones too (but not yet

• Tuples
•A lot like lists, but you cannot edit them. We'll revisit on
Monday.

A Small ADT

def point(x, y): # constructor
 return [x, y]

x = lambda point: point[0] # selector
y = lambda point: point[1]

def distance(p1, p2): # Operator
 return ((x(p2) - x(p1)**2 + (y(p2) -
y(p1))**2) ** 0.5

origin = point(0, 0)
my_house = point(5, 5)
campus = point(25, 25)
distance_to_campus = distance(my_house, campus)

Creating an Abstract Data Type

•Constructors & Selectors
•Operations
•Express the behavior of objects, invariants, etc
•Implemented (abstractly) in terms of Constructors and
Selectors for the object

•Representation
•Implement the structure of the object

Defining The Abstraction Barrier

•An abstraction barrier violation occurs when a part of the
program that can use the "higher level" functions uses "lower
level" ones instead
• At either layer of abstraction
• e.g. Should your function be aware of the implementation?
• Be consistent!

•Abstraction barriers make programs easier to get right,
maintain, and modify
•Fewer changes when representation changes

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-
SA

Question: Changing Representations? http://go.c88c.org/10

•Question 1.1
•Assuming we update our selectors, what are valid
representations for our point(x, y) ADT?

•Currently point(1, 2) is represented as [1, 2]

•A) [y, x] # [2, 1]
•B) “X: ” + str(x) + “ Y: ” + str(y)
 # “X: 1 Y: 2”
•C) str(x) + ' ' + str(y) # '1 2'
•D) All of the above
•E) None of the above

26

A Layered Design Process – Button Up

•Start with "What do you want to do?"
•Build the application based entirely on the ADT interface
•Focus first on Operations, then Constructors and Selectors
•Do not implement them! Your program won't work.
•You want to capture the "user's" point of view

•Build the operations in ADT on Constructors and Selectors
•Not the implementation representation
•This is the end of the abstraction barrier.

•Build the constructors and selectors on some concrete
representation

Example: Tic Tac Toe and Phone Book

•See the companion notebook.
•Download the file "ipynb"
•Go to datahub.berkeley.edu
•Log in, then select "Upload"

Question: The Abstraction Barrier

Which of these violates a board ADT?

•A) diag_left = diagonal(board, 0)
•B) board[0][2] = 'x'
•C) all_rows = rows(board)
•D) board = empty_board()
•E) None of the above

