Computational Structures in Data Science

Midterm Review

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Announcements & Policies

«Midterm:
« 2 hours, 120 Minutes

« Unlimited Handwritten Cheat sheets - More than ~3 is
counter-productive

- 1 CS88 Provided Reference Sheet
-Remember: HW6 / Lab 6 due next week, but are in scope.

YOou are not your
grades!

Do your best!

eley | https://c88c.org | © CC BY-NC-SA

My Advice

-Don't rush!
- Slow is fast and fast is slow
- BREATHE!
- Skim the exam first
- It's ok to do questions out of order!
- Get the stuff you're good without out of the way
- BUT don't spend too much time planning the exam.
-Read through the question once
- What's it asking you to do at a high level?
- What do the doctests suggest?
- What techniques should you be using?
- Use the scratch space!

Midterm Topics

- Everything Through Recursion
- Functions
- Higher Order Functions
- Functions as arguments
- Functions as return values
- Environment Diagrams
- Lists, Dictionaries
- List Comprehensions, Dictionary Comprehensions
- Abstract Data Types

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Recursion Review

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

The Recursive Process

Recursive solutions involve two major parts:

o Base case(s), the problem is simple enough to
be solved directly

o Recursive case(s). A recursive case has three

components:

= Divide the problem into one or more simpler or
smaller parts

* Invoke the function (recursively) on each part, and

= Combine the solutions of the parts into a solution
for the problem.

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

-\ yyd

def sum _of_squares(n):
if n < 1:
return 0
else:
return sgm_of_squares(n—l) + Nx*x2

N\ [N

3. Assume recusive solution to
simpler problem 4.”Combine” the simpler part of

the solution, with the recursive
case

yd

Recursion With Lists

- Goal: Find the smallest item in a list, recursively.

- Consider: How do we break this task into smaller parts? What is
the "smallest list"?

-We care about the size of the list itself, not the values.
def first(s):
"""Return the first element in a sequence."""
return s[0O]

def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

def min_r(s):
""TReturn minimum value in a sequence.'''
if Base Case

else:

Recursive Case

Computational Structures in Data Science

Questions from Ed

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Some Practice Questions

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @@ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exam Practice

*Spring 22 Q7
-Spring 20 Q5

7. (5.0 points) Closet Overhaul

You've designed a closet abstract data type to help you organize your wardrobe.

A closet contains two things:
e owner: the name of the closet owner represented as a string

e clothes: the collection of clothes in the closet represented as a dictionary, where the key is the clothing
item name and the value is the number of times the clothing item has been worn.

The make_closet constructor takes in owner (a string) and clothes (a list of strings representing clothing
items) and returns a closet ADT.

Given this, you've implemented the abstract data type as follows:

def make_closet(owner, clothes):
""" Create and returns a new closet.
clothes_dict = {}
for item in clothes:
clothes_dict[item] = O
return (owner, clothes_dict)

def get_owner(closet):
"un Returns the owner of the closet """
return closet[0]

def get_clothes(closet):
""" Returns a dictionary of the clothes in the closet """
return closet[1]

Given the closet ADT, implement the functions wear_clothes and favorite_clothing_item. You may not
need all the lines provided, and you may need to change the indentation for some lines.

5. (10 points) Atey Ate Already

It’s a lot more fun to think about food than take midterms, so let’s look at the cheapest places to fulfill an
order. Given the function total_cost and assuming it works as described, fill out find_restaurant to find the
cheapest restaurant to fulfill the order.

Remember: Pay close attention to the doctests to guide your solution.

def total_cost(restaurant, order):

Function that returns the total cost of an order at a certain
restaurant. Returns -1 if fulfilling the request is not possible.

>>> total cost (%chipotle?; [?burrito’?; 2taco?])
11.96

>>>: Eotal cost (2aTiver?; [?bHeba’l)

=0

We have omitted how this function works.

def find_restaurant(restaurants, order):
nun
Function that returns the cheapest restaurant and price as the first
element of a list followed by the prices for each of the restaurants.
In the case that no restaurant can fulfill the order, the first
element should be [’None found!’, -1]. In the case that two
restaurants have the same price, keep the first restaurant.
Hint: Use total_cost!
>35> Find rYeatanrant([2cliipotle?; 71a biurrita’]; ['birrito?; Itaco?])
[[*Ta Burrita?, 9.78]; [[>chipotle?; 11.96] ; [?Ta burrita’,9.78]]

>>> find_restaurant ([’sliver’,’cheeseboard’], [’boba’])
[[None found!, -1.0], [’sliver’, -1.0][’cheeseboard’, -1.0]]

(10 points) Rooms within Rooms within Rooms

You are a Data Scientist hired by UC Berkeley to find the largest room on campus. In order to schedule midterms,
your job is return the room and its capacity. The data on all the rooms plus capacity is in a weird format of
three element lists, where the first element is the room, the second element is the capacity, and the third element
is either the rest of the data or None. Assume that the capacity of each of the rooms is unique.

That is, the data look like [’Room’, Number, [...]].

Use the following lines of code to fill in the body of the function. You will need to fill in the blanks of the lines
provided. Some lines are optional.

return [rooms[0], rooms[1]]
largest_left = find_largest(
if rooms (2] == _____ _________
if largest_left[1] > rooms[1]:
return

return _______ _ _ _ __________
else: # this line is optional, depending upon your solution
else: # this line is optional, depending upon your solution

def find_largest(rooms):
Return the largest room from a weirdly nested list.
You can assume rooms is always 3 items long.
>>> rooms = [’Evans’, 150, [’Wheeler’, 700, [’Stadium’, 50000, Nonel]]]
>>> find_largest (rooms)
[’Stadium’, 50000]
>>> find_largest([’Evans’, 150, None])
[’Evans’, 150]

def find_largest (rooms):
nown

Return the largest room from a weirdly nested list.
You can assume rooms is always 3 items long.
>>> rooms = [’Evans’, 150, [’Soda’, 200, [’Wheeler’,
>>> find_largest (rooms)
[’Stadium’, 50000]
>>> find_largest([’Evans’, 150, [’Hearst Annex’, 50,
[’Evans’, 150]
nnn
if rooms[2] == None:
return [rooms[0], rooms[1]]
largest_left = find_largest(rooms[2])
if largest_left[1] > rooms[1]:
return largest_left
return [rooms[0], rooms[1]]

700,

[’Stadium’,

None]])

50000,

None]

i. (4.0 pt) Implement the find_new_interest method that returns a string representing a new potential
L interest for this User. To determine this new interest, first identify this user’s most similar follower
that has the largest number of mutual interests with this user. Then return a randomly selected
interest from this follower. But be careful, this randomly selected interest must not already exist in
this user’s interests (otherwise it would not be new!).

For this problem, assume that the user’s interests and followers are non-empty. Note that the
separate_interests function (see User class skeleton) may be helpful here. You may use random.choice(1lst
to return a radomly selected item from a list, 1st.

def find_new_interest(self):
>>> ul = User('bob', ['cooking', 'archery', 'tv'l)
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking']) # has one in common with bot
>>> u3 = User('mike', ['poker', 'tv', 'cooking'l) # has two in common with bob
>>> ul.add_follower (u2)
>>> ul.add_follower (u3)
>>> ul.find_new_interest ()
'poker!'

most_similar _follower = max(

Write the fully completed find_new_interest function below using the skeleton code provided. You
may not add, change, or delete lines from the skeleton code.

(10 points) Atey Ate Already

It’s a lot more fun to think about food than take midterms, so let’s look at the cheapest places to fulfill an
order. Given the function total_cost and assuming it works as described, fill out find restaurant to find the
cheapest restaurant to fulfill the order.

Remember: Pay close attention to the doctests to guide your solution.

def total_cost(restaurant, order):
nmnn
Function that returns the total cost of an order at a certain
restaurant. Returns -1 if fulfilling the request is not possible.
>>> total_cost(’chipotle’, [’burrito’, ’taco’])
11.96
>>> total_cost(’sliver’, [’boba’])
-1.0
mnn
We have omitted how this function works.
def find_restaurant (restaurants, order):
nmnn
Function that returns the cheapest restaurant and price as the first
element of a list followed by the prices for each of the restaurants.
In the case that no restaurant can fulfill the order, the first
element should be [’None found!’, -1]. In the case that two
restaurants have the same price, keep the first restaurant.
Hint: Use total_cost!
>>> find_restaurant ([’chipotle’, ’la burrita’], [’burrito’, ’taco’])
[[’la burrita’, 9.78], [[’chipotle’, 11.96], [’la burrita’,9.78]]

>>> find_restaurant([’sliver’,’cheeseboard’], [’boba’])
[[None found!, -1.0], [’sliver’, -1.0][’cheeseboard’, -1.0]]

nmmnn

def findRestaurant (restaurants, order):
moan

Function that returns the cheapest restaurant and price as the first
element of a list followed by the prices for each of the restaurants.

In the case that no restaurant can fulfill the order, the first

element should be [’None found!’, -1].

Hint: Use totalCost! In the case that two restaurants have the same price,
keep the first restaurant.

>>> findRestaurant ([’chipotle’, ’la burrita’], [’burrito’, ’taco’])

[[’1la burrita’, 9.78], [[’chipotle’, 11.96], [’la burrita’,9.78]]

>>> findRestaurant([’sliver’,’cheeseboard’], [’boba’])

[[None found!, -1.0], [’sliver’, -1.0]J[’cheeseboard’, -1.0]]

placesList = [[restaurant, totalCost(restaurant, order)]
for restaurant in restaurants]
minCost = -1.0
cheapestPlace = "None found!"
for place in range(placesList):
if placel[1] != -1.0 and (place[l1] < minCost or minCost == -1.0):

minCost = place[1]
cheapestPlace = place[0]
return [cheapestPlace, minCost] + placesList

