
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Midterm Review

Announcements & Policies

•Midterm:
• 2 hours, 120 Minutes
• Unlimited Handwritten Cheat sheets – More than ~3 is
counter-productive
• 1 CS88 Provided Reference Sheet

•Remember: HW6 / Lab 6 due next week, but are in scope.

You are not your
grades!

Do your best!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

My Advice

•Don't rush!
• Slow is fast and fast is slow
• BREATHE!

•Skim the exam first
• It's ok to do questions out of order!
• Get the stuff you're good without out of the way
• BUT don't spend too much time planning the exam.

•Read through the question once
• What's it asking you to do at a high level?
• What do the doctests suggest?
• What techniques should you be using?

• Use the scratch space!

Midterm Topics

• Everything Through Recursion
• Functions
• Higher Order Functions
• Functions as arguments
• Functions as return values

• Environment Diagrams
• Lists, Dictionaries
• List Comprehensions, Dictionary Comprehensions
• Abstract Data Types

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Recursion Review

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

The Recursive Process

Recursive solutions involve two major parts:
ú Base case(s), the problem is simple enough to

be solved directly
ú Recursive case(s). A recursive case has three

components:
 Divide the problem into one or more simpler or

smaller parts
 Invoke the function (recursively) on each part, and
 Combine the solutions of the parts into a solution

for the problem.

Recursion Key concepts – by example

def sum_of_squares(n):
 if n < 1:
 return 0
 else:
 return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution to
simpler problem 4. ”Combine” the simpler part of

the solution, with the recursive
case

Recursion With Lists

•Goal: Find the smallest item in a list, recursively.
•Consider: How do we break this task into smaller parts? What is
the "smallest list"?
•We care about the size of the list itself, not the values.

def first(s):
 """Return the first element in a sequence."""
 return s[0]
def rest(s):
 """Return all elements in a sequence after the first"""
 return s[1:]

def min_r(s):
 '''Return minimum value in a sequence.'''
 if len(s) == 1:
 return first(s)
 else:
 return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Questions from Ed

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Some Practice Questions

Exam Practice

•Spring 22 Q7
•Spring 20 Q5

SP22

SP20 #6

Fa21 8c

SP20 #5

