Computational Structures in Data Science

Object-Oriented Programming:
Part 2, Inheritance

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Announcements

- Midterm Feedback:

- Sorry it was more difficult than intended.

- We "dropped" the most difficult parts of Q4, G&H

- Mean/Median were about 60%, just a bit lower than typical.
- Midterm Regrades:

- Open tomorrow, for 1 week.

- Please don't argue over the weighting of the rubric.

- If your answer falls outside the rubric, but you think deserves credit,
please demonstrate why your solution is correct or close to correct.

- "Moar points plz" simply doesn't work. ©

Computational Structures in Data Science

Object-Oriented Programming:
Part 2, Inheritance

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Class Attributes: Keeping Track of Our Instances?

Problem:
- We can make many accounts... they all live in memory.
« But how do we know what all of our accounts are?

- How could we create an account number which is always
increasing?

- Solution:
- A class in Python can manage data shared across all instances

- We call these class attributes which are distinguished from
instance attributes

Classes Can Have Attributes Too!

- Class attributes (as opposed to instance attributes) belong to the
class itself, instead of each object

« This means there is one value which is shared for all of the
class's objects

- Be Careful!
- It's easy to overdo class attributes

- Methods that rely only on class attributes are called class
methods

- Python has some special features we won't use, but are useful:

https://docs.python.org/3/library/functions.htmli?highlight=classmet
hod#classmethod

https://docs.python.org/3/library/functions.html?highlight=classmethod
https://docs.python.org/3/library/functions.html?highlight=classmethod

Example: class attribute

class BaseAccount:
account_number_seed = 1000

def __init__(self, name, initial_deposit):
self. _name = name
self._balance = initial_deposit
self. _acct_no = BaseAccount.account_number_seed
BaseAccount.account_number_seed += 1

def name(self):
return self._ name

def balance(self):
return self._balance

def withdraw(self, amount):
self. _balance -= amount
return self._balance

More class attributes

class BaseAccount:

account_number_seed = 1000

accounts = []

def __init__(self, name, initial_deposit):
self. _name = name
self._balance = initial_deposit
self. _acct_no = BaseAccount.account_number_seed
BaseAccount.account_number_seed += 1
BaseAccount.accounts.append(self)

def name(self):

def show_accounts():
for account in BaseAccount.accounts:
print(account.name(),
account.account_no(),account.balance())

Are There Better Approaches?

- BEWARE! Class attributes are useful but can get confusing.
- Perhaps what want is a Bank () class
- The bank would have a create_account() method

- Each Bank() would have its own accounts list, as a set of
instance variables.

class Bank():

def __1init___(self):
self.account_no_seed = 1000

self.accounts = []
def create_account(self, name, balance):

acct = BaseAccount(name, balance,
self.account_no_seed)

self.accounts.append(acct)
self.account_no_seed += 1

Computational Structures in Data Science

Object-Oriented Programming:
”"Magic” Methods

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

- Python's Special Methods define built-in properties
__init__ # Called when making a new instance

sub__ # Maps to the - operator

str__ # Called when we call print()

__repr__ # Called in the interpreter

Special Initialization Method

__1nit__ is called automatically when we write:
my_account = BaseAccount('me', 0)

class BaseAccount:

def __init__(self, name, initial_deposit):
self.name = na
self.balance =

inT™Jjal_deposit

def account_name(self): return None

return self . name

def account_balance(self):
return self.balance

def withdraw(self, amount):
self.balance -= amount
return self.balance

More special methods

class BaseAccount:
. (init, etc removed)
def deposit(self, amount):
self. _balance += amount
return self._balance

def __repr__(self): Goal: unambiguous
return '< ' + str(self._acct_no) +

"[' + str(self._name) + '] >'

def __str__(self): Goal: readable

return 'Account: ' + str(self._acct_no) +
"[' + str(self._name) + ']

def show_accounts():
for account in BaseAccount.accounts:
print(account)

More Magic Methods

-We will not go through an exhaustive list!

- Magic Methods start and end with "double
underscores" __

-They map to built-in functionality in Python. Many
are logical names:

« 1dnit__ > Class Constructor
« __add__ > + operator

« __sub__ > - operator

« __getitem__ > [] operator
- __repr__ and __str__ - control output

- A longer list for the curious:

Live Demo

Computational Structures in Data Science

Object-Oriented Programming:
Inheritance

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

- Inheritance allows classes to reuse methods and attributes
from a parent class.

- super() is a new method in Python

- Subclasses or child classes are distinct from on another,
but share properties of the parent.

-Define a class as a specialization of an existing class
-Inherent its attributes, methods (behaviors)
-Add additional ones
-Redefine (specialize) existing ones
-Ones in superclass still accessible in its namespace

Class Inheritance

- Classes can inherit methods and attributes from parent
classes but extend into their own class.

=

|

=) &

Vehicle

Co o
e D

Python class statement

class ClassName:
<statement-1>

<statement—-N>

class ClassName (inherits / parent-class):
<statement-1>

<statement—-N>

Example

class BaseAccount:

def _

_init__(self, name, initial_deposit):
Initialize the instance attributes

self. _name = name
self. _acct_no = Account._account_number_seed

Account._account_number_seed += 1
self._balance = initial_deposit

class CheckingAccount(BaseAccount):

def

__init__(self, name, initial_deposit):

Use superclass initializer
BaseAccount.__1init__(self, name, initial_deposit)
Alternatively:

super().__init__(name, 1initial_deposit)

Additional initialization

self._type = "Checking"

Accessing the Parent Class

- super () binds methods in the parent or "superclass" to
the current instance

- Can be called anywhere in our class
- Handles passing sel f to the method
- Handles looking up an attribute on a parent class, too.
- We can directly call ParentClass.method(self, ..)
« This is not quite as flexible if our class structure changes.
* In general, prefer using super()!
« Outside of C88C, things can get complex...
* https://docs.python.org/3/library/functions.html#fsuper

https://docs.python.org/3/library/functions.html

Computational Structures in Data Science

Object-Oriented Programming:
Evolving The Bank Model

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Composing Classes Together

- Currently, our BaseAccount stores a lot of data in class attributes...

- This suggests we are trying to accomplish an entirely new kind of
class, or object

- A Bank!
- We should extract that these functions into their own class
- A bank can now manage:

- making accounts

- keeping track of account numbers

- showing and listing accounts

Live Demo

