
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Object-Oriented Programming:
Part 2, Inheritance

Announcements

• Midterm Feedback:
• Sorry it was more difficult than intended.
• We "dropped" the most difficult parts of Q4, G&H
• Mean/Median were about 60%, just a bit lower than typical.

• Midterm Regrades:
• Open tomorrow, for 1 week.
• Please don't argue over the weighting of the rubric.
• If your answer falls outside the rubric, but you think deserves credit,
please demonstrate why your solution is correct or close to correct.
• "Moar points plz" simply doesn't work. J

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Object-Oriented Programming:
Part 2, Inheritance

Class Attributes: Keeping Track of Our Instances?

•Problem:
• We can make many accounts… they all live in memory.
• But how do we know what all of our accounts are?
• How could we create an account number which is always
increasing?

• Solution:
• A class in Python can manage data shared across all instances
• We call these class attributes which are distinguished from
instance attributes

Classes Can Have Attributes Too!

• Class attributes (as opposed to instance attributes) belong to the
class itself, instead of each object
• This means there is one value which is shared for all of the
class's objects

• Be Careful!
• It's easy to overdo class attributes

• Methods that rely only on class attributes are called class
methods
• Python has some special features we won't use, but are useful:
•
https://docs.python.org/3/library/functions.html?highlight=classmet
hod#classmethod

https://docs.python.org/3/library/functions.html?highlight=classmethod
https://docs.python.org/3/library/functions.html?highlight=classmethod

Example: class attribute

class BaseAccount:
 account_number_seed = 1000

 def __init__(self, name, initial_deposit):
 self._name = name
 self._balance = initial_deposit
 self._acct_no = BaseAccount.account_number_seed
 BaseAccount.account_number_seed += 1

 def name(self):
 return self._name

 def balance(self):
 return self._balance

 def withdraw(self, amount):
 self._balance -= amount
 return self._balance

More class attributes

class BaseAccount:
 account_number_seed = 1000
 accounts = []
 def __init__(self, name, initial_deposit):
 self._name = name
 self._balance = initial_deposit
 self._acct_no = BaseAccount.account_number_seed
 BaseAccount.account_number_seed += 1
 BaseAccount.accounts.append(self)

 def name(self):
 ...

 def show_accounts():
 for account in BaseAccount.accounts:
 print(account.name(),
 account.account_no(),account.balance())

Are There Better Approaches?

• BEWARE! Class attributes are useful but can get confusing.
• Perhaps what want is a Bank() class
• The bank would have a create_account() method
• Each Bank() would have its own accounts list, as a set of
instance variables.

class Bank():
 def __init___(self):
 self.account_no_seed = 1000
 self.accounts = []
 def create_account(self, name, balance):
 acct = BaseAccount(name, balance,
self.account_no_seed)
 self.accounts.append(acct)
 self.account_no_seed += 1

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Object-Oriented Programming:
"Magic" Methods

Learning Objectives

• Python's Special Methods define built-in properties
• __init__ # Called when making a new instance
• __sub__ # Maps to the - operator
• __str__ # Called when we call print()
• __repr__ # Called in the interpreter

Special Initialization Method

class BaseAccount:

 def __init__(self, name, initial_deposit):
 self.name = name
 self.balance = initial_deposit

 def account_name(self):

 return self.name
 def account_balance(self):
 return self.balance

 def withdraw(self, amount):
 self.balance -= amount
 return self.balance

return None

__init__ is called automatically when we write:
 my_account = BaseAccount('me', 0)

More special methods

class BaseAccount:
 … (init, etc removed)
 def deposit(self, amount):
 self._balance += amount
 return self._balance

 def __repr__(self):
 return '< ' + str(self._acct_no) +
 '[' + str(self._name) + '] >'

 def __str__(self):
 return 'Account: ' + str(self._acct_no) +
 '[' + str(self._name) + ']'

 def show_accounts():
 for account in BaseAccount.accounts:
 print(account)

Goal: readable

Goal: unambiguous

More Magic Methods

•We will not go through an exhaustive list!
• Magic Methods start and end with "double
underscores" __
•They map to built-in functionality in Python. Many
are logical names:
• __init__ → Class Constructor
• __add__ → + operator
• __sub__ → - operator
• __getitem__ → [] operator
• __repr__ and __str__ → control output
• A longer list for the curious:

Live Demo

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Object-Oriented Programming:
Inheritance

Learning Objectives

• Inheritance allows classes to reuse methods and attributes
from a parent class.
• super() is a new method in Python
• Subclasses or child classes are distinct from on another,
but share properties of the parent.

Inheritance

•Define a class as a specialization of an existing class
• Inherent its attributes, methods (behaviors)
•Add additional ones
•Redefine (specialize) existing ones
•Ones in superclass still accessible in its namespace

Class Inheritance

•Classes can inherit methods and attributes from parent
classes but extend into their own class.

Python class statement

class ClassName:
<statement-1>
.
.
.
<statement-N>

class ClassName (inherits / parent-class):
<statement-1>
.
.
.
<statement-N>

Example

class BaseAccount:
 def __init__(self, name, initial_deposit):
 # Initialize the instance attributes
 self._name = name
 self._acct_no = Account._account_number_seed
 Account._account_number_seed += 1
 self._balance = initial_deposit

class CheckingAccount(BaseAccount):
 def __init__(self, name, initial_deposit):
 # Use superclass initializer
 BaseAccount.__init__(self, name, initial_deposit)
 # Alternatively:
 # super().__init__(name, initial_deposit)
 # Additional initialization
 self._type = "Checking"

Accessing the Parent Class

• super() binds methods in the parent or "superclass" to
the current instance
• Can be called anywhere in our class
• Handles passing self to the method
• Handles looking up an attribute on a parent class, too.
• We can directly call ParentClass.method(self, …)
• This is not quite as flexible if our class structure changes.
• In general, prefer using super()!
• Outside of C88C, things can get complex…
• https://docs.python.org/3/library/functions.html#super

https://docs.python.org/3/library/functions.html

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Object-Oriented Programming:
Evolving The Bank Model

Composing Classes Together

• Currently, our BaseAccount stores a lot of data in class attributes…
• This suggests we are trying to accomplish an entirely new kind of
class, or object
• A Bank!

• We should extract that these functions into their own class
• A bank can now manage:
• making accounts
• keeping track of account numbers
• showing and listing accounts

Live Demo

