Computational Structures in Data Science

Data Structures:
Linked Lists

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Announcements

- Reminders:
- Regrade Requests due later this week
- Fill out the MT Survey for EC

Fun Video: CGP Grey Rock Paper Scissors

- How many rounds of Rock Paper
Scissorsisa 1in 1,000,000,000 chance
of winning?

« Each video leads to another set of
videos.

- This is technically a tree, but we'll
come back to that later.

l One-in-a-Million YouTube Game: Can YOU Win?
CGP Grey @ . : Y
@ 6.01M subscribers ol L) subscribed v/ i 46k OGP /> Share & Thanks S

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Where We’re Going

- For now - we've learned most of the basics of
Python!
- There are plenty of Python we don’t see in CS88

- We'll be applying OOP principles to explore new topics.

- We're going to focus on storing / organizing data

- Lists, Tuples, and Dictionaries: Data Structures you already
know!

« BUT: How do we build our own?

« We'll build our own lists first, then talk about trees and other
ways of organizing data

- Last few lectures: Switch to SQL

Why “Data Structures”? (Next Few lectures)

-Data Structures
-OOP helps us organize our programs
-Data Structures help us organize our data!
-You already know lists and dictionaries!
-We'll see a new one today
- Enjoy this stuff? Take 61B!
- Find it challenging? Don't worry! It's a different way of thinking.

Computational Structures in Data Science

Linked Lists

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Data Structures

- A data structure is a way to organize or group a bunch of
independent pieces of data.

-Lists (arrays)
-Dictionaries
-Tuples

-A class, on its own, is not necessarily a data structure, it
represents a new data type.

-a "car" or a "person" is an instance of that data type.

- Lists, Dicts, etc are also data types; their goal is to organize
other data.

-These are common patterns that can be used to solve a wide
variety of problems.

-Sometimes we're giving structure to make it easier as a
programmer, sometimes we're trying to be fast or efficient.

Linked Lists

- A Recursive List, sometimes called a "rlist"
- Linked lists contain other linked lists
- A series of items with two pieces:
-A value, usually called "first"
A “pointer” to the rest of the items in the list.

12| «+—>»99| e—>»37| &——>

-We'll use a very small Python class “Link” to model this.
Link(12, Link(99, Link(37, Link.empty)))

What’s Needed For a Linked List?

- first

« rest

- An idea of “empty”

- Nothing else is necessary

- __repr__, __len__ methods are all useful
shortcuts and useful recursion practice.

The Link Class

class Link:
empty = ()
def __init__(self, first, rest=empty):
self.first = first
self.rest = rest

That's all we need!

- We can add a __repr__ method, length, etc.

- Use an empty tuple for clarity / easier than None.
. () has lots of useful methods defined, like len()

Recursion Is Implicit

12

99

37

self.rest

12

99

37

12

99

12

37

99

37

Iterating or Processing a Linked List

- Our base case or stopping condition?
- Linked List is Empty!
- We can use recursion or iteration.
- Which is “better"?
- Depends on the problem we are trying to solve!

Iterating Over All Items in Linked List

def print_link(link): def print_link(link):
if not link: if not link:
return return
print(link.first) item = 1link
print_link(link.rest) while item:

print(item.first)
item = item.rest
» Base Case: No more items
* Do Action * Handle the empty list
» Recurse on the rest of the list « Keep track of current item

- Update item to be the next in
sequence.

Demo - See the Notebook

Uses for a Linked List

- Modeling a Polynomial Equation

- each item is (coefficient, exponent, next_term)
- Itemsin amusic Playlist

- each item is a (song, next_song) pair

- easy to add/remove items
- Specifically: often want to remove the first item

- Model real-world relationships
- Anything that is a "chain" is a good option
- Next week: We'll extend this idea to "trees"

Why are linked lists useful?

- Honestly, a list() is easier most of the time
- Python handles all the hard details!

- When data gets large, there are lots of edge
cases.

- In terms of efficiency: Linked list make it fast to
move items around, inserts and deletes.

- But they are slower to finding any single item.

- In Ants Project: You'll see a list of "Place objects
which are linked together via an entrance and an
exit.

Efficiency of Linked Lists vs Lists

- Linked Lists generally use less memory.

- Linked Lists:
- Once you've found an item, inserting / removing is easy, O(1)
- Finding anything other than the first/last item is O(n)

- "Regular" Lists:

- Inserting / Removing items, other than the last is O(n) - due to
internal copying

- Finding any random item is O(1).

- What if you need to iterate over all items in order?
« O(n) in both cases

