
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Data Structures:
Linked Lists



Announcements

•  Reminders:
• Regrade Requests due later this week
• Fill out the MT Survey for EC



Fun Video: CGP Grey Rock Paper Scissors

•  How many rounds of Rock Paper 
Scissors is a 1 in 1,000,000,000 chance 
of winning?
•  Each video leads to another set of 
videos.
•  This is technically a tree, but we'll 
come back to that later.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA



Where We’re Going

•  For now – we’ve learned most of the basics of 
Python!
•  There are plenty of Python we don’t see in CS88

•  We’ll be applying OOP principles to explore new topics.
•  We’re going to focus on storing / organizing data
• Lists, Tuples, and Dictionaries: Data Structures you already 
know!

•  BUT: How do we build our own?
• We’ll build our own lists first, then talk about trees and other 
ways of organizing data

•  Last few lectures: Switch to SQL



Why "Data Structures"? (Next Few lectures)

•Data Structures
•OOP helps us organize our programs
•Data Structures help us organize our data!
•You already know lists and dictionaries!
•We’ll see a new one today

•  Enjoy this stuff? Take 61B!
•  Find it challenging? Don’t worry! It’s a different way of thinking.



Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Linked Lists



Data Structures

•A data structure is a way to organize or group a bunch of 
independent pieces of data.
•Lists (arrays)
•Dictionaries
•Tuples

•A class, on its own, is not necessarily a data structure, it 
represents a new data type.
•a "car" or a "person" is an instance of that data type.
• Lists, Dicts, etc are also data types; their goal is to organize 
other data.

•These are common patterns that can be used to solve a wide 
variety of problems. 
•Sometimes we're giving structure to make it easier as a 
programmer, sometimes we're trying to be fast or efficient.



Linked Lists

•  A Recursive List, sometimes called a "rlist"
•  Linked lists contain other linked lists
•A series of items with two pieces:
•A value, usually called "first"
•A “pointer” to the rest of the items in the list.

•We’ll use a very small Python class “Link” to model this.
•Link(12, Link(99, Link(37, Link.empty)))



What's Needed For a Linked List?

• first
• rest
• An idea of “empty”
• Nothing else is necessary
• __repr__, __len__ methods are all useful 
shortcuts and useful recursion practice. 



The Link Class

class Link:
    empty = ()
    def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest

That's all we need!
•  We can add a __repr__ method, length, etc.
•  Use an empty  tuple for clarity / easier than None.
• () has lots of useful methods defined, like len()



Recursion Is Implicit

self.rest



Iterating or Processing a Linked List

• Our base case or stopping condition?
• Linked List is Empty!
• We can use recursion or iteration.
• Which is “better”?
• Depends on the problem we are trying to solve!



Iterating Over All Items in Linked List

def print_link(link):
    if not link:
        return
    print(link.first)
    print_link(link.rest)

• Base Case: No more items
• Do Action
• Recurse on the rest of the list

def print_link(link):
    if not link:
        return
    item = link
    while item:
        print(item.first)
        item = item.rest

• Handle the empty list
• Keep track of current item
• Update item to be the next in 
sequence. 



Demo – See the Notebook



Uses for a Linked List

•  Modeling a Polynomial Equation
• each item is (coefficient, exponent, next_term)

•  Items in a music Playlist
• each item is a (song, next_song) pair
• easy to add/remove items
•  Specifically: often want to remove the first item

•  Model real-world relationships
• Anything that is a "chain" is a good option
• Next week: We'll extend this idea to "trees"



Why are linked lists useful?

• Honestly, a list() is easier most of the time
• Python handles all the hard details!
• When data gets large, there are lots of edge 
cases.

• In terms of efficiency: Linked list make it fast to 
move items around, inserts and deletes.
• But they are slower to finding any single item.
• In Ants Project: You'll see a list of `Place` objects 
which are linked together via an entrance and an 
exit.



Efficiency of Linked Lists vs Lists

•  Linked Lists generally use less memory.
•  Linked Lists:
• Once you've found an item, inserting / removing is easy, O(1)
• Finding anything other than the first/last item is O(n)

•  "Regular" Lists:
• Inserting / Removing items, other than the last is O(n) – due to 
internal copying
• Finding any random item is O(1).

•  What if you need to iterate over all items in order?
• O(n) in both cases


