Computational Structures in Data Science

Efficiency & Run Time Analysis

Announcements

- Reminder to practice using pen & paper, notebooks, etc.
- Use the extensions form, please don't email for extensions
 - https://go.c88c.org/extensions
 - Post on ed first, please!
 - Way more staff on ed than on email.
- Review and Exam Prep sections starting this week (tomorrow!)
 - Check the CS88 Calendar
- Reminder:
 - MT Survey
 - Regrade requests close tomorrow.

Computational Structures in Data Science

Efficiency & Run Time Analysis

Learning Objectives

- Runtime Analysis:
 - •How long will my program take to run?
 - •Why can't we just use a clock?
 - How can we simplify understanding computation in an algorithm
- Enjoy this stuff? Take 61B!
- Find it challenging? Don't worry! It's a different way of thinking.

Efficiency is all about trade-offs

- Running Code: Takes Time, Requires Memory
 - More efficient code takes less time or uses less memory
- Any computation we do, requires both time and "space" on our computer.
- Writing efficient code is not obvious
 - Sometimes it is even convoluted!
- But!
- We need a framework before we can optimize code
- Today, we're going to focus on the time component.

Is this code fast?

- •Most code doesn't *really* need to be fast! Computers, even your phones are already amazingly fast!
- •Sometimes...it does matter!
 - Lots of data
 - Small hardware
 - Complex processes
- Slow code takes up battery power

Beware!

"Premature Optimization is the root of all evil"

- Donald Knuth, Stanford CS Professor

There is **no use** in fast code if it is wrong!

Runtime analysis problem & solution

Time w/stopwatch, but...

•Different computers may have different runtimes. ⊗

•Same computer may have different runtime on the <u>same</u> input. \odot

•Need to implement the algorithm first to run it. \odot

• Solution: Count the number of "steps" involved, not time!

- •Each operation = 1 step
 - 1 + 2 is one step
 - Ist[5] is one step
- When we say "runtime", we'll mean # of steps, not time!

Runtime: input size & efficiency

- Definition:
 - •Input size: the # of things in the input.
 - e.g. length of a list, the number of iterations in a loop.
 - •Running time as a function of input size
 - Measures efficiency
- •Important!
 - •In CS88 we won't care about the efficiency of your solutions!
 - •...in CS61B we will

Runtime analysis: worst or average case?

- •Could use avg case:
 - Average running time over a vast # of inputs
- Instead: use worst case
 - Consider running time as input grows
- Why?
 - Nice to know most time we'd ever spend
 - Worst case happens often
 - The "average" can be similar to the worst
- Often called "Big O" for "order"
 - O(1), O(n) ...

Runtime analysis: Final abstraction

- Instead of an exact number of operations we'll use abstraction
 - •Want order of growth, or dominant term
- •In CS88 we'll consider

Constant	0(1)
----------------------------	------

•Logarithmic O(log n)

•Linear O(n)

•Quadratic O(n²)

•Exponential O(2ⁿ)

•E.g. $10n^2 + 4\log(n) + n$

•...is quadratic

Example: Finding a student (by ID)

- Input
 - Unsorted list of students L
 - Find student S
- Output
 - •True if S is in L, else False
- Pseudocode Algorithm
 - •Go through one by one, checking for match.
 - If match, true
 - •If exhausted L and didn't find S, false

- •Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - 3. Linear
 - 4. Quadratic
 - 5. Exponential

Computational Patterns

- If the number of steps to solve a problem is always the same → Constant time: O(1)
- If the number of steps increases similarly for each larger input → Linear Time: O(n)
 - Most commonly: for each item
- If the number of steps increases by some a factor of the input \rightarrow Quadradic Time: O(n²)
 - Most commonly: Nested for Loops
- Two harder cases:
 - Logarithmic Time: O(log n)
 - •We can double our input with only one more level of work
 - Dividing data in "half" (or thirds, etc)
 - •Exponential Time: O(2ⁿ)
 - •For each bigger input we have 2x the amount of work!
 - Certain forms of Tree Recursion

Example: Finding a student (by ID)

- Input
 - Sorted list of students L
 - Find student S
- Output : same
- Pseudocode Algorithm
 - Start in middle
 - If match, report true
 - •If exhausted, throw away half of L and check again in the middle of remaining part of L
 - If nobody left, report false

- •Worst-case running time as function of the size of L?
 - 1. Constant
 - 2. Logarithmic
 - 3. Linear
 - 4. Quadratic
 - 5. Exponential

Efficiency of Linked Lists vs Lists

- Linked Lists generally use less memory.
 - But this can make it slower to compute data.
- Linked Lists:
 - Once you've found an item, inserting / removing is easy, O(1)
 - Finding anything other than the first/last item is O(n)
- "Regular" Lists:
 - Inserting / Removing items, other than the last is O(n) due to internal copying
 - Finding any random item is O(1).
- What if you need to iterate over all items in order?
 - O(n) in both cases

Comparing Fibonacci

```
def iter_fib(n):
    x, y = 0, 1
    for _ in range(n):
       x, y = y, x+y
    return x
def fib(n): # Recursive
    if n < 2:
       return n
    return fib(n - 1) + fib(n - 2)
```

Tree Recursion

- Fib(4) \rightarrow 9 Calls
- Fib(5) → 16 Calls
- Fib(6) → 26 Calls
- Fib(7) \rightarrow 43 Calls
- Fib(20) →

Why?

- Notice there was all this duplication in the tree?
- What is the exact order of growth?
 - It's exponential.
 - phi to the N (φ ⁿ), where phi is the golden ratio.

N	Operations
1	1
2	3
3	5
4	9
7	41
8	67
20	21891

Computational Structures in Data Science

Improving Efficiency

Learning Objectives

- Learn how to cache the results to save time.
- "memoization" is a specific version to avoid repeated calculations

Example

- Use a dictionary to cache results.
- This is called *memoization*

```
fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
    global fib_results
    if n in fib_results:
        print(f'found {n} -> {fib_results[n]}')
        return fib_results[n]
    if n < 2:
        fib_results[n] = n
        return n
    result = memo_fib(n - 1) + memo_fib(n - 2)
    fib_results[n] = result
    return result
```

A Better Approach

- Python's functools module has a `cache` function
- Uses a technique called decorators that we don't cover.
 - Decorators are really just a "shortcut" for higher order functions.
 - e.g. cache_fib = cache(fib) is a similar approach to the function below, but less commonly used.

```
from functools import cache
```

```
@cache
def cache_fib(n): # Recursive
   if n < 2:
      return n
   return cache_fib(n - 1) + cache_fib(n - 2)</pre>
```

What next?

- Understanding *algorithmic complexity* helps us know whether something is possible to solve.
- Gives us a formal reason for understanding why a program might be slow
- This is only the beginning:
 - •We've only talked about time complexity, but there is *space* complexity.
 - •In other words: How much memory does my program require?
 - Often you can trade time for space and vice-versa
 - •Tools like "caching" and "memorization" do this.
- If you think this is cool take CS61B!