## Computational Structures in Data Science

Efficiency<br>\& Run Time Analysis

Berkeley
©(1)(수)

## Announcements

- Reminder to practice using pen \& paper, notebooks, etc.
- Use the extensions form, please don't email for extensions
- https://go.c88c.org/extensions
- Post on ed first, please!
- Way more staff on ed than on email.
- Review and Exam Prep sections starting this week (tomorrow!)
- Check the CS88 Calendar
- Reminder:
- MT Survey
- Regrade requests close tomorrow.


## Computational Structures in Data Science

Efficiency<br>\& Run Time Analysis

Berkeley
©(1)(수)

## Learning Objectives

-Runtime Analysis:
-How long will my program take to run?
-Why can't we just use a clock?

- How can we simplify understanding computation in an algorithm
-Enjoy this stuff? Take 61B!
-Find it challenging? Don't worry! It's a different way of thinking.


## Efficiency is all about trade-offs

- Running Code: Takes Time, Requires Memory
- More efficient code takes less time or uses less memory
-Any computation we do, requires both time and "space" on our computer.
-Writing efficient code is not obvious
- Sometimes it is even convoluted!
-But!
-We need a framework before we can optimize code
-Today, we're going to focus on the time component.
- Most code doesn't really need to be fast! Computers, even your phones are already amazingly fast!
-Sometimes...it does matter!
- Lots of data
- Small hardware
- Complex processes
- Slow code takes up battery power


## Beware!

"Premature Optimization is the root of all evil"

- Donald Knuth, Stanford CS Professor

There is no use in fast code if it is wrong!

## Runtime analysis problem \& solution

-Time w/stopwatch, but...
-Different computers may have different runtimes. :
-Same computer may have different runtime on the same input. ©:
-Need to implement the algorithm first to run it. :

- Solution: Count the number of "steps" involved, not time! -Each operation = 1 step
- $1+2$ is one step
- Ist[5] is one step
- When we say "runtime", we'll mean \# of steps, not time!



## Runtime: input size \& efficiency

-Definition:
-Input size: the \# of things in the input.

- e.g. length of a list, the number of iterations in a loop.
-Running time as a function of input size
-Measures efficiency
-Important!
- In CS88 we won't care about the efficiency of your solutions!


## C88C

## CS61B

-...in CS61B we will

## Runtime analysis : worst or average case?

-Could use avg case:

- Average running time over a vast \# of inputs
-Instead: use worst case
- Consider running time as input grows
- Why?
- Nice to know most time we'd ever spend
- Worst case happens often
- The "average" can be similar to the worst
-Often called "Big O" for "order"

- O(1), O(n) ...


## Runtime analysis: Final abstraction

- Instead of an exact number of operations we'll use abstraction
-Want order of growth, or dominant term
- In CS88 we'll consider
- Constant

O(1)

- Logarithmic $O(\log n)$
- Linear
- Quadratic
- Exponential
-E.g. $10 n^{2}+4 \log (n)+n$
-...is quadratic

Exponential Cubic Quadratic


Graph of order of growth curves
on log-log plot

- Input
-Unsorted list of students L
-Find student S
- Output
-True if $S$ is in $L$, else False
- Pseudocode Algorithm
-Go through one by one, checking for match.
-If match, true
-If exhausted $L$ and didn't find S, false
-Worst-case running time as function of the size of $L$ ?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

## Computational Patterns

- If the number of steps to solve a problem is always the same $\rightarrow$ Constant time: $\mathrm{O}(1)$
- If the number of steps increases similarly for each larger input $\rightarrow$ Linear Time: O(n)
- Most commonly: for each item
- If the number of steps increases by some a factor of the input $\rightarrow$ Quadradic Time: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Most commonly: Nested for Loops
-Two harder cases:
-Logarithmic Time: O(log n)
-We can double our input with only one more level of work
-Dividing data in "half" (or thirds, etc)
-Exponential Time: O(2n)
-For each bigger input we have $2 x$ the amount of work!
-Certain forms of Tree Recursion


## Example: Finding a student (by ID)

- Input
- Sorted list of students L
-Find student S
- Output : same
- Pseudocode Algorithm
-Start in middle
-If match, report true
-If exhausted, throw away half of $L$ and check again in the middle of remaining part of L
-If nobody left, report false

-Worst-case running time as function of the size of $L$ ?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

## Efficiency of Linked Lists vs Lists

- Linked Lists generally use less memory.
- But this can make it slower to compute data.
- Linked Lists:
- Once you've found an item, inserting / removing is easy, $\mathrm{O}(1)$
- Finding anything other than the first/last item is $\mathrm{O}(\mathrm{n})$
- "Regular" Lists:
- Inserting / Removing items, other than the last is $\mathrm{O}(\mathrm{n})$ - due to internal copying
- Finding any random item is $\mathrm{O}(1)$.
-What if you need to iterate over all items in order?
- O(n) in both cases


## Comparing Fibonacci

$$
\begin{aligned}
& \text { def } \text { iter_fib }(n):^{x, y=0,1} \\
& \text { for } \quad \text { - in range }(n): \\
& x, y=y, x+y \\
& \text { return } x
\end{aligned}
$$

def fib(n): \# Recursive if $n<2:$
return n return fib(n-1) $+\operatorname{fib}(n-2)$

## Tree Recursion

- Fib(4) $\rightarrow 9$ Calls
- $\mathrm{Fib}(5) \rightarrow 16$ Calls
- Fib(6) $\rightarrow 26$ Calls
- $\mathrm{Fib}(7) \rightarrow 43$ Calls
- Fib(20) $\rightarrow$



## Why?

- Notice there was all this duplication in the tree?
-What is the exact order of growth?
- It's exponential.
- phi to the $\mathrm{N}\left(\varphi^{\mathrm{n}}\right)$, where phi is the golden ratio.

N
Operations
1
1
2
3
4
9
7
41
8
67

## Computational Structures in Data Science

## Improving Efficiency

## Learning Objectives

- Learn how to cache the results to save time.
- "memoization" is a specific version to avoid repeated calculations


## Example

- Use a dictionary to cache results.
- This is called memoization

```
fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
    global fib_results
    if n in fib_results:
        print(f'found {n} -> {fib_results[n]}')
        return fib_results[n]
    if n < 2:
        fib_results[n] = n
        return n
    result = memo_fib(n - 1) + memo_fib(n - 2)
    fib_results[n] = result
    return result
```


## A Better Approach

- Python's functools module has a `cache` function
- Uses a technique called decorators that we don't cover.
- Decorators are really just a "shortcut" for higher order functions.
- e.g. cache_fib = cache (fib) is a similar approach to the function below, but less commonly used.
from functools import cache
@cache
def cache_fib(n): \# Recursive if $n<2:$
return n
return cache_fib(n - 1) + cache_fib(n - 2)


## What next?

- Understanding algorithmic complexity helps us know whether something is possible to solve.
- Gives us a formal reason for understanding why a program might be slow
-This is only the beginning:
-We've only talked about time complexity, but there is space complexity.
-In other words: How much memory does my program require?
- Often you can trade time for space and vice-versa
-Tools like "caching" and "memorization" do this.
-If you think this is cool take CS61B!

