
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Efficiency
& Run Time Analysis

Announcements

• Reminder to practice using pen & paper, notebooks, etc.
• Use the extensions form, please don't email for extensions
• https://go.c88c.org/extensions
• Post on ed first, please!
• Way more staff on ed than on email.

• Review and Exam Prep sections starting this week (tomorrow!)
• Check the CS88 Calendar

• Reminder:
• MT Survey
• Regrade requests close tomorrow.

https://go.c88c.org/extensions

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Efficiency
& Run Time Analysis

Learning Objectives

•Runtime Analysis:
•How long will my program take to run?
•Why can’t we just use a clock?
• How can we simplify understanding computation in an algorithm

•Enjoy this stuff? Take 61B!
•Find it challenging? Don’t worry! It’s a different way of thinking.

Efficiency is all about trade-offs

•Running Code: Takes Time, Requires Memory
• More efficient code takes less time or uses less memory

•Any computation we do, requires both time and "space" on our
computer.
•Writing efficient code is not obvious
• Sometimes it is even convoluted!

•But!
•We need a framework before we can optimize code
•Today, we're going to focus on the time component.

Is this code fast?

•Most code doesn’t really need to be fast!
Computers, even your phones are already
amazingly fast!
•Sometimes…it does matter!
• Lots of data
• Small hardware
• Complex processes
• Slow code takes up battery power

Beware!

"Premature Optimization is the root of all evil"
 - Donald Knuth, Stanford CS Professor

There is no use in fast code if it is wrong!

Runtime analysis problem & solution

•Time w/stopwatch, but…
•Different computers may have different runtimes. L
•Same computer may have different runtime on the same input. L
•Need to implement the algorithm first to run it. L

•Solution: Count the number of “steps” involved, not time!
•Each operation = 1 step
• 1 + 2 is one step
• lst[5] is one step

• When we say “runtime”, we’ll mean # of steps, not time!

Runtime: input size & efficiency

•Definition:
•Input size: the # of things in the
input.
• e.g. length of a list, the number of
iterations in a loop.
•Running time as a function of input
size
•Measures efficiency

• Important!
•In CS88 we won’t care about the
efficiency of your solutions!
•…in CS61B we will

C88C

CS61B

CS61C

Runtime analysis : worst or average case?

•Could use avg case:
• Average running time over a vast # of inputs
•Instead: use worst case
• Consider running time as input grows
• Why?
• Nice to know most time we’d ever spend
• Worst case happens often
• The "average" can be similar to the worst
•Often called “Big O” for "order"
• O(1), O(n) …

Runtime analysis: Final abstraction

• Instead of an exact number of
operations we’ll use abstraction
•Want order of growth, or dominant term

• In CS88 we’ll consider
•Constant O(1)
•Logarithmic O(log n)
•Linear O(n)
•Quadratic O(n2)
•Exponential O(2n)

•E.g. 10n2 + 4log(n) + n
•…is quadratic

Graph of order of growth curves
on log-log plot

Constant

Logarithmic

Linear

QuadraticCubicExponential

Example: Finding a student (by ID)

• Input
•Unsorted list of students L
•Find student S

•Output
•True if S is in L, else False

•Pseudocode Algorithm
•Go through one by one,
checking for match.
•If match, true
•If exhausted L and didn’t
find S, false

•Worst-case running time as
function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Computational Patterns

• If the number of steps to solve a problem is always the same → Constant time: O(1)
• If the number of steps increases similarly for each larger input → Linear Time: O(n)
• Most commonly: for each item

• If the number of steps increases by some a factor of the input → Quadradic Time: O(n2)
•Most commonly: Nested for Loops

•Two harder cases:
•Logarithmic Time: O(log n)
•We can double our input with only one more level of work
•Dividing data in “half” (or thirds, etc)

•Exponential Time: O(2n)
•For each bigger input we have 2x the amount of work!
•Certain forms of Tree Recursion

Example: Finding a student (by ID)

• Input
•Sorted list of students L
•Find student S

•Output : same
•Pseudocode Algorithm
•Start in middle
•If match, report true
•If exhausted, throw away half
of L and check again in the
middle of remaining part of
L
•If nobody left, report false

•Worst-case running time as
function of the size of L?

1. Constant
2. Logarithmic
3. Linear
4. Quadratic
5. Exponential

Efficiency of Linked Lists vs Lists

• Linked Lists generally use less memory.
• But this can make it slower to compute data.

• Linked Lists:
• Once you've found an item, inserting / removing is easy, O(1)
• Finding anything other than the first/last item is O(n)

• "Regular" Lists:
• Inserting / Removing items, other than the last is O(n) – due to
internal copying
• Finding any random item is O(1).

• What if you need to iterate over all items in order?
• O(n) in both cases

Comparing Fibonacci

def iter_fib(n):
 x, y = 0, 1
 for _ in range(n):
 x, y = y, x+y
 return x

def fib(n): # Recursive
 if n < 2:
 return n
 return fib(n - 1) + fib(n - 2)

Tree Recursion

•Fib(4) → 9 Calls
•Fib(5) → 16 Calls
•Fib(6) → 26 Calls
•Fib(7) → 43 Calls
•Fib(20) →

17

Why?

• Notice there was all this duplication in the tree?
•What is the exact order of growth?
• It's exponential.
• phi to the N (φ n), where phi is the golden ratio.

N Operations

1 1
2 3
3 5
4 9
7 41
8 67
20 21891

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Improving Efficiency

Learning Objectives

• Learn how to cache the results to save time.
• "memoization" is a specific version to avoid repeated calculations

Example

• Use a dictionary to cache results.
• This is called memoization

fib_results = {}
def memo_fib(n): # Look up values in our dictionary.
 global fib_results
 if n in fib_results:
 print(f'found {n} -> {fib_results[n]}')
 return fib_results[n]
 if n < 2:
 fib_results[n] = n
 return n
 result = memo_fib(n - 1) + memo_fib(n - 2)
 fib_results[n] = result
 return result

A Better Approach

•Python's functools module has a `cache` function
• Uses a technique called decorators that we don't cover.
• Decorators are really just a "shortcut" for higher order functions.
• e.g. cache_fib = cache(fib) is a similar approach to the
function below, but less commonly used.

from functools import cache

@cache
def cache_fib(n): # Recursive
 if n < 2:
 return n
 return cache_fib(n - 1) + cache_fib(n - 2)

https://docs.python.org/3/library/functools.html

What next?

•Understanding algorithmic complexity helps us know whether
something is possible to solve.
•Gives us a formal reason for understanding why a program might be
slow
•This is only the beginning:
•We’ve only talked about time complexity, but there is space
complexity.
•In other words: How much memory does my program require?
•Often you can trade time for space and vice-versa
•Tools like “caching” and “memorization” do this.

• If you think this is cool take CS61B!

