Computational Structures in Data Science

Lecture:
Exceptions

Berkeley

UNIVERSITY OF CALIFORNIA

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Learning Objectives

- Exceptions give us a formal way to address error
conditions

- "Catch" exceptions in a Python Program
- Define and Raise our own exceptions

Errors Can Occur Just About Anywhere!

- Function receives arguments of improper type?
-Resources (e.g. files or some data) are not available
- Network connection is lost or times out?

< . == I W (L AT 7R P
1/ JJ;‘.T’*"J : C_Oblne Io.ec) (Slv\c cJ\c\L)
: oy ted | Iy TAAS Tesh

kK Reloy®0 @une| F
S \Mo'ﬂ\)nn r¢\qu\.

Fiest iacthaleae @ adiLL 4 Lol i |
PPN bl 5 5)

Jue k‘/}ﬂyl W g

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

Example exceptions (

-Unhandled, "thrown" back to the top level interpreter
- Or halt the program

>>> 3/0

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

ZeroDivisionError: division by zero

>>> str.lower (1)

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

TypeError: descriptor 'lower' requires a 'str' object

but received a 'int'

>>> llll[z]

Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>

IndexError: string index out of range

>>>

https://docs.python.org/3/library/exceptions.html

Exceptions mean something bad has
happened!

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Functions

-Q: What is a function supposed to do?
-A: One thing well
-Q: What should it do when it is passed arguments that don’t make sense?

>>> def divides(x, y):
return y%x ==

>>> divides(0, 5)

2?27

>>> def get(data, selector):
return data[selector]

>>> get({'a': 34, 'cat':'9 lives'}, 'dog’)
27?7

Exceptional exit from functions

« Function doesn't “return” but instead execution is thrown out of
the function

>>> def divides(x, y):
return y % x ==

>>> divides(0, 5)
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
File "<stdin>", line 2, 1in divides
ZeroDivisionError: integer division or modulo by zero
>>> def get(data, selector):
return datal[selector]

>>> get({'a': 34, 'cat':'9 lives'}, 'dog')
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
File "<stdin>", line 2, 1in get
KeyError: 'dog'
>>>

Reading A “Stack Trace” or “Traceback” (

- All errors in Python should return some structured
feedback.

- Errors may be dense but contain some really helpful
information!
< python3 -1 18-Exceptions.py
What is your age? 5
Catching CS88Error
Traceback (most recent call last):
File "..Exceptions.py'", Lline 24, in <module>

get_age_in_days()

r&le ”m”, line 2@) 1N get_age_ﬁn_days
raise e
r&le ”m”, line 14) 1N get_age_ﬁn_days

raise CS88Error('You seem young!')
__main__.CS88Error: You seem young!

https://docs.python.org/3/library/traceback.html

Continue out of multiple calls deep

- Stack “unwinds” until exception is handled or we reach the start
of the program

def divides(x, y):
return y¥x ==
def divides24(x):
return divides(x,24)
divides24(0

ZeroDivisionError Traceback (most recent call last)
<ipython-input-l4-ad26ceBae76a> in <module>()

3 def divides24(x):
4 return divides(x,24) Python 3.3 Frames Objects
-—==> 5 divides24(0)
def divides(x, y): Global frame function
<ipython-input-l4-ad26ceBae76a> in divides24(x) => return y%x == 0 divid divides(x, y)
- return y$x == 0 def divides24(x): AR
3 def divides24(x): return divides(x,?24) divides24 deﬁ; .
—_——— 4 . .return divides(x,24) divides24(0) ivides24(x)
5 divides24(0)
" divides24
) ,) o Edit code
<ipython-input-l4-ad26ceBae76a> in divides(x, y) x 0
1 def divides(x, y):
——— 2 return y%$x == 0
3 def divides}2,4(x)' <Back Step 8 of 11 | Forward> Last>> divides
4 return divides(x,24) . o x 0
5 divides24(0) integer division or modulo by zero
y 24
cuted

ZeroDivisionError: integer division or modulo by zero

Types of exceptions

- Exceptions are just classes in Python, with common types for ease of use / clarity.
- All inherit from BaseException

- AssertionError - The of exception raised by a failing assert statement

-TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

-KeyError -- A key wasn't found in a dictionary

-RuntimeError -- Catch-all for troubles during interpretation

-Your own exceptions!

Flow of control stops at the exception

-And is ‘thrown back’ to wherever it is caught, by default no where.

def divides24(x):
return noisy divides(x,24

divides24(0)

ZeroDivisionError Traceback (most recer
<ipython-input-24-ea%94e8lbe222> in <module>()
-=-==> 1 divides24(0)

<ipython-input-23-c56bcllb3032> in divides24(x)
1l def divides24(x):
————> 2 return noisy divides(x,24)

<ipython-input-20-df96adb0cl8a> in noisy divides(x, y)
1 def noisy divides(x, y):

———> 2 result = (y & x == 0)
3 if result:
4 print (" {0} divides {1}".format(x, y))
5 else:

ZeroDivisionError: integer division or modulo by zero

Assert Statements

-Allow you to make assertions about assumptions that your code
relies on

-Use them liberally!

-Incoming data is "dirty" and unsafe till you've "cleaned" it
assert <assertion expression>, <string for failed>

-They "do nothing" if the statement is true. def divides(x, y):

1 : . I =) d
-Raise an exception of type AssertionError _ 28se€rt x == 9, “bDenominator
must be non-zero

*You can turn them off: return y % x == 0
- Ignored in optimize flag: python3 -0 ...
- Governed by bool __debug__

Demo

- See an exception get raised
- Use an assert statement to validate input
- Use try/catch to recover from an exception

Handling Errors - try [except

-Wrap your code in try - except statements
try:

<try suite>
except <exception class> as <name>:

<except suite>
. # continue here if <try suite> succeeds w/o exception

- Execution rule
-<try suite> is executed first
-If during this an exception is raised and not handled otherwise
-And if the exception inherits from <exception class>
‘Then <except suite> is executed with <name> bound to the

exception
- Control jumps to the except suite of the most recent try that

handles the exception

def safe apply fun(f,x):

try:
return f(x) # normal execution, return the result
except Exception as e: # exceptions are objects of class deri
return e # value returned on exception

def divides(x, y):
assert x != 0, "Bad argument to divides - denominator should be non-zero"
if (type(x) != int or type(y) != int):
raise TypeError("divides only takes integers")
return y%x ==

Raise statement

-Exception are raised with a raise statement
. raise <exception>, e.g.:

- raise NameError (f"The property {name} does not
exist")

- <expression> must evaluate to a subclass of BaseException or
an instance of one

- Exceptions are constructed like any other object
. TypeError(‘Bad argument)
- Raise Exceptions for unrecoverable errors!
- Something bad has gone on and you cannot continue.

Exceptions are Classes

class NoiseyException(Exception):
def __init__(self, stuff):
print("Bad stuff happened", stuff)

class CS88Error (Exception):
pass # The one time you can skip init. ;)

try:
return fun(x)
except:
raise NoiseyException((fun, x))

Demo

-Approach use of exceptions as a design problem
-Meaningful behavior => methods [& attributes]
-ADT methodology: What should a function do?
-What's private and hidden? vs What's public?

-Use it to streamline development

-Anticipate exceptional cases and unforeseen problems
try ... except
-raise / assert

