
Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Data Structures:
Trees

Announcements

• Ants Project out next week
• ~ 4 weeks long
• Partners recommended, but work
together!
• Do not “trade off” questions!

Learning Objectives

• Trees can be seen as a general version of
linked lists
• Trees have a value, and are connected to
"sub-trees" called branches
• We can often use recursion to process all
items in a tree
• We typically have recursion inside a loop
over all the tree's branches
• This is called "Depth First Search"

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why Use Trees?

•Trees represent lots of natural structures
• A boss who has employees report to them
• Courses which belong to departments, and
departments which colleges in a University
• Anything with a hierarchy, really.
• A family tree
• Biological taxonomies (Kingdom, Phylum….)
• Files and Folders

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: Linked Lists

• A Recursive List, sometimes called a "rlist"
• Linked lists contain other linked lists
•A series of items with two pieces:
•A value, usually called "first"
•A “pointer” to the rest of the items in the
list.

•We’ll use a very small Python class “Link” to
model this.

What is a tree?

•A recursive data structure
• Almost like a linked list!
•What if a linked list could have multiple "rest"
elements?
•We call these "branches".
•Each branch is also its own Tree.

Trees are common in Computer Science

•Trees give us awesome approaches for “divide and conquer”
• Used in every computer to speed up searching for files (Binary search!)
• Used for modeling decision systems in AI programs
• Used for modelling the potential moves in a game.

•Another recursive data structure!
•We can keep practicing recursion and working with classes
• Computer science really likes recursion. J

•Trees are a simplified form of a graph, a tool which can help us model just about
anything.
• Graphs are a (relatively) important topic in CS61B

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Trees: Code Overview

(Go Inspect the ipynb)

What’s a tree? (C88C-style)

• A tree is a list of trees!
• Each tree has a node, with a value.
• Each node has `branches` which are itself,
trees.
• There can be zero or many branches
• There is always 1 ”root” node

Our Simple Tree Class: A couple new methods!

class Tree:
 def __init__(self, value, branches=()):
 self.value = value
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)
 def __repr__(self):
 branches_str = ''
 if self.branches:
 branches_str = ', ' + repr(self.branches)
 return f'Tree({self.value}{braches_str})'
 def is_leaf(self):
 return not self.branches
 def add_branch(self, tree):
 assert isinstance(tree, Tree), "Each branch of a Tree must be an instance of a Tree"
 self.branches.append(tree)

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Trees:
Practice With Recursion:
traverse_recursive

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Trees:
Counting Each Node

How do we count nodes?

• The "root" or top of the tree is one node.
• (We assume we can't have a tree of 0 nodes!)
• For each subtree we… Count the nodes!
• Doesn't this sound like recursion?
• Hard Part: How do we group the results of
recursion?
• Remember our recursive algorithm:
• Base case
• Recursive Case:
• Divide

def count_nodes(t):
 """The number of leaves in
tree.

 >>> count_nodes(fib_tree(5))
 8
 """
 if t.is_leaf():
 return 1
 else:

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Trees:
Practice With Recursion:

print_tree

Computational Structures in Data Science

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Trees:
Advanced Topics: Searching

Optional!

Searching Trees: Two Strategies

•The searching we have been doing today is
called “Depth First Search”, or DFS.
•Recursion makes the algorithm very nice.
• First: we deal with our current item, then we
get to the branches.
•We always make a recursive call on the first
branch
•We continue recursing until there are no
more branches
•Then the function executes, and we go back
“up” a level and check out the next branch.

Searching a Tree by level: Breadth First Search

•What if I want to check out all the values of my
branches before making a recursive call?
•What if we said, you just can’t use recursion.
(Sometimes, CS instructors do weird things like
that…)
•This is used in practice for lots of cool things:
•Shortest path between two items (more of a
graph and not a tree, usually). Google Maps
uses it for routing and the algorithms that
power the internet use it.

