Computational Structures in Data Science

Iterators and Generators

Berkeley

©@O®SO©

Announcements

« Ants out!
- Check out Review & Exam Prep Sections

- times have moved a bit due to low attendance
- Reminder: No class/OH/reviews on Friday

« (random) Cool YouTube Video
- https://www.youtube.com/watch?v=nmgFG7PUHfo

- Signal Processing / History / Algorithmic Complexity

https://www.youtube.com/watch?v=nmgFG7PUHfo

Today & Next Lecture

-Sequences vs Iterables
-Using iterators without generating all the data
-Magic methods
- _next__
- _Iter__
-Generator concept
-Generating an iterator from iteration with yield
-Iterators - the iter protocol
- _ getitem__ protocol
-Is an object iterable?
-Lazy evaluation with iterators

Computational Structures in Data Science

Iterators & Genators

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

- Iterators and similar patterns exist in many languages
- We'll see more examples when we work with SQL

- Often times, with large data we can't compute a result
immediately.

- What if we have infinite data?
- A template for iteration makes solving (some) problems easy.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: Why Object-Oriented Design?

-Approach creation of a class as a design problem
-Meaningful behavior => methods [& attributes]
-ADT methodology
‘What's private and hidden? vs What's public?
- Design for composition:
- Use consistent patterns to solve problems more easily.

-Anticipate exceptional cases and unforeseen problems
-try ... catch
-raise / assert

Review: What is a sequence? [Docs]

- Sequence is an "ordered set"
- list
- tuples
- ranges
- strings
- Some common operations:
- Slicing syntax: data[1:3]
- Membership: 'cs88' 1in courses
- Concatenation: breakfast foods + lunch_foods + dinner_foods
- Count [tems: 'cs88'.count('8")

https://docs.python.org/3/library/stdtypes.html

Iterable - an object you can iterate over

-iterable: An object capable of yielding its members one at a time.
-iterator: An object representing a stream of data.
-We have worked with many iterables as sequences

- i.e. We haven't yet cared about the more generic forms.

Functions that return iterables

map, filter, zip

-These objects are not sequences.
- They are iterables. A "stream" of data we can iterate over.
-Why?

-Can't directly slice into them.

-Don't know their length

-If we want to see all the elements at once, we need to explicitly
collect them, by using list() or tuple()

Using an iterator

data = map(lambda x: x*x, range(5))
Iterate with for loops

for num 1n data:

print(num)

data = map(lambda x: x*x, range(5))
next(data) # returns 0
next(data) # returns 1 ..

next(data) # eventually raises Stoplteration error

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

How do for, list, tuple Work?

- Python's built in tools use the iterator pattern to work!

- for internally calls next() repeatedly

- list() internally calls repeatedly
- They handle the stop condition, adding to a list, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Generator Expressions

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Generator Expressions

- We've used them as list comprehensions
- Generator Expressions return iterators
- access items by calling next()

- An expression which computes its values on demand
- Can be used in place of many sequences, like in for loops, map, etc.

>>> nums = (x * x for x in range(20))
>>> next(nums)

0]

>>> next(nums)

1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Generator Expressions and Generators

-Calling list() works, but it builds the result in one go.
- This loses the benefits when we have large data!
- Generator Expressions are a short-hand to make iterators

- Generators allow us to successively generate (get it?) the next
result!

Computational Structures in Data Science

Generator Functions

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terminology [Docs]

generator

A function which returns a generator iterator. It looks like a normal
function except that it contains yield expressions for producing a
series of values usable in a for-loop or that can be retrieved one at
a time with the next() function.

generator iterator
An object created by a generator function.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Generators: turning iteration into an iterable

-Generator functions use the yield keyword

-Generator functions have no return statement, but they don't
return None

‘They implicitly return a generator object
-Generator objects are just iterators

def squares(n):
for 1 i1n range(n):
yield (i*1)

Spongebob Case

def spongebob_case(text):
caps = True
for letter 1in text:
if caps:
yield letter.upper ()
else:
yield letter.lower ()
caps = not caps
- Generate one letter at a time.
- Explore how caps changes with each iteration.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Nest iteration

def all_pairs(x):
for iteml in x:
for item2 in x:
yield(iteml, item2)

Order of Execution

- Our generator function executes until we hit yield
- Once we hit yield, execution is paused
- Explore this with print statements

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Iterators

IIIIIIIIIIIIIIIIIIIIII

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

What’s an Iterator? [Docs]

iterator

An object representing a stream of data. Repeated calls to the
iterator’'s __next__ () method (or passing it to the built-in
function next ()) return successive items in the stream. When no

more data are available a StopIteration exception is raised
instead.

iterable

An object capable of returning its members one at a time.
Examples of include all sequence types and objects of any classes
you define with an __iter__() method or with a
__getitem__() method that implements sequence semantics.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Next element in generator iterable

-lterables work because they implement some "magic methods"
on them. We saw magic methods when we learned about classes,

-e.g., _init_, _repr__and _ str
‘The first one we see for iterablesis = next _

-iter () -transforms asequence into an iterator
- Usually this is not necessary, but can be useful.

Iterators: The 1ter protocol [

-In order to be iterable, a class must implement the iter protocol

-The iterator objects themselves are required to support the
following two methods, which together form the iterator protocol:

-__iter__: Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.

-This method returns an iterator object (which can be self)

- next : Return the next item from the container. If there are
no further items, raise the Stoplteration exception.

https://docs.python.org/3/c-api/iter.html

The Iter Protocol In Practice

-Classes get to define how they are iterated over by defining these
methods

- containers (objects like lists, tuples, etc) typically define a
Container class and a separate Containterlterator class.

- Lists, Ranges, etc are not directly iterators
- We cannot call next() on them.

- However, they implement an __1iter__ method, and
list_iterator, range_iterator class, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Computational Structures in Data Science

Building a Range Iterator

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Making a Range Iterator

- What does a range need?
- Start value
- Stop
- (We'll ignore step sizes)
- keep track of the current value
« An __iter__ method
- A__next_ method

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Example

class myrange:
def __init__(self, n):
self.i = 0
self.n = n
def __diter__(self):
return self
def __next__(self):
if self.i < self.n:
current = self.1
self.i += 1
return current
else:
raise StopIteration()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

The Getltem Protocol

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Get Item protocol

-Another way an object can behave like a sequence is indexing:
Using square brackets “[]” to access specific items in an object.

-Defined by special method: __getitem__(self, 1)
-Method returns the item at a given index

class myrange2:
def init (self, n):
self.n = n

def getitem (self, i):
if i > 0 and 1 < self.n:
return i

else:
raise IndexError

def len (self):

return self.n

Computational Structures in Data Science

Iterators and Generators Review

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terms and Tools

- Iterators: Objects which we can use in a for loop

- Anything that can be looped over!

- Sometimes they're lazy, sometimes not!
- Generators: A shorthand way to make an iterator that uses yield

- a function that uses yield is a generator function
- a generator function returns a generator object
- Generators do not use return
- Sequences: A particular type of iterable
- They know they're length, support slicing
- Are not lazy

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Type Checking

Berkeley

@ @ @ @ Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Determining if an object is iterable

-from collections.abc import Iterable
isinstance([1,2,3], Iterable)

-This is more general than checking for any list of particular type,
e.g., list, tuple, string...

