
Computational Structures in Data Science

Iterators and Generators

Announcements

• Ants out!
• Check out Review & Exam Prep Sections
• times have moved a bit due to low attendance
• Reminder: No class/OH/reviews on Friday

• (random) Cool YouTube Video
• https://www.youtube.com/watch?v=nmgFG7PUHfo
• Signal Processing / History / Algorithmic Complexity

https://www.youtube.com/watch?v=nmgFG7PUHfo

Today & Next Lecture

•Sequences vs Iterables
•Using iterators without generating all the data
•Magic methods
• __next__
• __iter__

•Generator concept
•Generating an iterator from iteration with yield

• Iterators – the iter protocol
• __getitem__ protocol
• Is an object iterable?
•Lazy evaluation with iterators

Computational Structures in Data Science

Iterators & Genators

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Why?

• Iterators and similar patterns exist in many languages
• We'll see more examples when we work with SQL
• Often times, with large data we can't compute a result
immediately.
• What if we have infinite data?
• A template for iteration makes solving (some) problems easy.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Review: Why Object-Oriented Design?

•Approach creation of a class as a design problem
•Meaningful behavior => methods [& attributes]
•ADT methodology
•What’s private and hidden? vs What’s public?

• Design for composition:
• Use consistent patterns to solve problems more easily.

•Anticipate exceptional cases and unforeseen problems
•try … catch
•raise / assert

Review: What is a sequence? [Docs]

• Sequence is an "ordered set"
• list
• tuples
• ranges
• strings

• Some common operations:
• Slicing syntax: data[1:3]
• Membership: 'cs88' in courses
• Concatenation: breakfast_foods + lunch_foods + dinner_foods
• Count Items: 'cs88'.count('8')

https://docs.python.org/3/library/stdtypes.html

Iterable - an object you can iterate over

•iterable: An object capable of yielding its members one at a time.
•iterator: An object representing a stream of data.
•We have worked with many iterables as sequences
• i.e. We haven't yet cared about the more generic forms.

Functions that return iterables

map, filter, zip

•These objects are not sequences.
• They are iterables. A "stream" of data we can iterate over.
•Why?
•Can't directly slice into them.
•Don't know their length
•If we want to see all the elements at once, we need to explicitly
collect them, by using list() or tuple()

Using an iterator

data = map(lambda x: x*x, range(5))
Iterate with for loops
for num in data:
 print(num)

data = map(lambda x: x*x, range(5))
next(data) # returns 0
next(data) # returns 1 …
next(data) # eventually raises StopIteration error

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

How do for, list, tuple Work?

• Python's built in tools use the iterator pattern to work!
• for internally calls next() repeatedly
• list() internally calls repeatedly
• They handle the stop condition, adding to a list, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Generator Expressions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Generator Expressions

• We've used them as list comprehensions
• Generator Expressions return iterators
• access items by calling next()

• An expression which computes its values on demand
• Can be used in place of many sequences, like in for loops, map, etc.

>>> nums = (x * x for x in range(20))
>>> next(nums)
0
>>> next(nums)
1

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Generator Expressions and Generators

•Calling list() works, but it builds the result in one go.
• This loses the benefits when we have large data!
• Generator Expressions are a short-hand to make iterators
• Generators allow us to successively generate (get it?) the next
result!

Computational Structures in Data Science

Generator Functions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terminology [Docs]

generator
A function which returns a generator iterator. It looks like a normal
function except that it contains yield expressions for producing a
series of values usable in a for-loop or that can be retrieved one at
a time with the next() function.

generator iterator
An object created by a generator function.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Generators: turning iteration into an iterable

•Generator functions use the yield keyword
•Generator functions have no return statement, but they don’t
return None
•They implicitly return a generator object
•Generator objects are just iterators

def squares(n):
 for i in range(n):
 yield (i*i)

Spongebob Case

• Generate one letter at a time.
• Explore how caps changes with each iteration.

def spongebob_case(text):
 caps = True
 for letter in text:
 if caps:
 yield letter.upper()
 else:
 yield letter.lower()
 caps = not caps

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Nest iteration

def all_pairs(x):
 for item1 in x:
 for item2 in x:
 yield(item1, item2)

Order of Execution

• Our generator function executes until we hit yield
• Once we hit yield, execution is paused
• Explore this with print statements

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Iterators

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

iterator
An object representing a stream of data. Repeated calls to the
iterator’s __next__() method (or passing it to the built-in
function next()) return successive items in the stream. When no
more data are available a StopIteration exception is raised
instead.
iterable
An object capable of returning its members one at a time.
Examples of include all sequence types and objects of any classes
you define with an __iter__() method or with a
__getitem__() method that implements sequence semantics.

What's an Iterator? [Docs]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Next element in generator iterable

•Iterables work because they implement some "magic methods"
on them. We saw magic methods when we learned about classes,
•e.g., __init__, __repr__ and __str__.
•The first one we see for iterables is __next__

•iter() – transforms a sequence into an iterator
• Usually this is not necessary, but can be useful.

Iterators: The iter protocol [Docs]

•In order to be iterable, a class must implement the iter protocol
•The iterator objects themselves are required to support the
following two methods, which together form the iterator protocol:
•__iter__: Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.
•This method returns an iterator object (which can be self)

•__next__ : Return the next item from the container. If there are
no further items, raise the StopIteration exception.

https://docs.python.org/3/c-api/iter.html

The Iter Protocol In Practice

•Classes get to define how they are iterated over by defining these
methods
• containers (objects like lists, tuples, etc) typically define a
Container class and a separate ContainterIterator class.

• Lists, Ranges, etc are not directly iterators
• We cannot call next() on them.

• However, they implement an __iter__ method, and
list_iterator, range_iterator class, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Iterables

Computational Structures in Data Science

Building a Range Iterator

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Making a Range Iterator

• What does a range need?
• Start value
• Stop
• (We'll ignore step sizes)
• keep track of the current value
• An __iter__ method
• A __next__ method

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Example

class myrange:
 def __init__(self, n):
 self.i = 0
 self.n = n
 def __iter__(self):
 return self
 def __next__(self):
 if self.i < self.n:
 current = self.i
 self.i += 1
 return current
 else:
 raise StopIteration()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

The GetItem Protocol

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Get Item protocol

•Another way an object can behave like a sequence is indexing:
Using square brackets “[]” to access specific items in an object.
•Defined by special method: __getitem__(self, i)
•Method returns the item at a given index

Computational Structures in Data Science

Iterators and Generators Review

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terms and Tools

• Iterators: Objects which we can use in a for loop
• Anything that can be looped over!
• Sometimes they’re lazy, sometimes not!
• Generators: A shorthand way to make an iterator that uses yield
• a function that uses yield is a generator function
• a generator function returns a generator object
• Generators do not use return
• Sequences: A particular type of iterable
• They know they’re length, support slicing
• Are not lazy

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Type Checking

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Determining if an object is iterable

•from collections.abc import Iterable
•isinstance([1,2,3], Iterable)

•This is more general than checking for any list of particular type,
e.g., list, tuple, string...

