
Computational Structures in Data Science

Iterators and Generators
(Part 2)

Today:

•Pick up where we left off!
•Iterators – the iter protocol
•Getitem protocol
•Is an object iterable?
•Lazy evaluation with iterators

Computational Structures in Data Science

Iterators

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

iterator
An object representing a stream of data. Repeated calls to the
iterator’s __next__() method (or passing it to the built-in
function next()) return successive items in the stream. When no
more data are available a StopIteration exception is raised
instead.
iterable
An object capable of returning its members one at a time.
Examples of include all sequence types and objects of any classes
you define with an __iter__() method or with a
__getitem__() method that implements sequence semantics.

What's an Iterator? [Docs]

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html

Next element in generator iterable

•Iterables work because they implement some "magic methods"
on them. We saw magic methods when we learned about classes,
•e.g., __init__, __repr__ and __str__.
•The first one we see for iterables is __next__

•iter() – transforms a sequence into an iterator
• Usually this is not necessary, but can be useful.

Iterators: The iter protocol [Docs]

•In order to be iterable, a class must implement the iter protocol
•The iterator objects themselves are required to support the
following two methods, which together form the iterator protocol:
•__iter__: Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in
statements.
•This method returns an iterator object (which can be self)

•__next__ : Return the next item from the container. If there are
no further items, raise the StopIteration exception.

https://docs.python.org/3/c-api/iter.html

The Iter Protocol In Practice

•Classes get to define how they are iterated over by defining these
methods
• containers (objects like lists, tuples, etc) typically define a
Container class and a separate ContainterIterator class.

• Lists, Ranges, etc are not directly iterators
• We cannot call next() on them.
• We can all iter(list), iter(range), etc if needed.

• However, they implement an __iter__ method, and
list_iterator, range_iterator class, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Demo

Iterables

Computational Structures in Data Science

Building a Range Iterator

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Making a Range Iterator

• What does a range need?
• Start value
• Stop
• (We'll ignore step sizes)
• keep track of the current value
• An __iter__ method
• A __next__ method

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Example

class myrange:
 def __init__(self, n):
 self.i = 0
 self.n = n
 def __iter__(self):
 return self
 def __next__(self):
 if self.i < self.n:
 current = self.i
 self.i += 1
 return current
 else:
 raise StopIteration()

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

The GetItem Protocol

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Get Item protocol – Build a Sequene

•Another way an object can behave like a sequence is indexing:
Using square brackets “[]” to access specific items in an object.
•Defined by special method: __getitem__(self, i)
•Method returns the item at a given index

Get Item Protocol

• When __iter__ isn't defined, check if __getitem__ exists
• __getitem__ must accept integers as indices
• Start at 0
• Continue iterating until IndexError is raised

• This is an older way of making iterators.
• Why two ways?
• Languages evolve over time!
• There's often more than one valid design.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Get Item Protocol [Docs]

class myrange2:
 def __init__(self, n):
 self.n = n
 def __getitem__(self, i):
 if i >= 0 and i < self.n:
 return i
 else:
 raise IndexError
 def __len__(self):
 return self.n

https://peps.python.org/pep-0234/

Computational Structures in Data Science

Iterators and Generators Review

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Terms and Tools

• Iterators: Objects which we can use in a for loop
• Anything that can be looped over!
• Sometimes they’re lazy, sometimes not!
• Generators: A shorthand way to make an iterator that uses yield
• a function that uses yield is a generator function
• a generator function returns a generator object
• Generators do not use return
• Sequences: A particular type of iterable
• They know they’re length, support slicing
• Are not lazy

What's the Big Picture?

• We have new tools for building data structures that behave
sequences
• We can handle "infinite" streams of data.
• We can build our own for loops, perhaps custom for loops.

What can we do now?

• Build our own for-loop like functions!
• Python doesn't let us extend built in keywords
• So we can make a function like doFor(sequence, action)
• Is the sequence already an iterator? à Use next()
• Can we call iter(sequence)? à Use next()
• Can we call sequence[0]? à Use Indexing
• Now we can get items
• We can call fn(some_item) until:
• We catch StopIteration or IndexError
• Other Errors we should probably not address

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Type Checking

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Determining if an object is iterable

•from collections.abc import Iterable
•isinstance([1,2,3], Iterable)

•This is more general than checking for any list of particular type,
e.g., list, tuple, string...

