
ABSTRACT DATA TYPES 5
DATA C88C

September 22, 2023

1 Abstract Data Types

1.1 Data Abstraction

Data abstraction is a powerful concept in computer science that allows programmers to
treat code as objects — for example, car objects, chair objects, people objects, etc. That
way, programmers don’t have to worry about how code is implemented — they just have
to know what it does.

Data abstraction mimics how we think about the world. For example, when you want to
drive a car, you don’t need to know how the engine was built or what kind of material the
tires are made of. You just have to know how to turn the wheel and press the gas pedal.

An abstract data type consists of two types of functions:

• Constructors: functions that build the abstract data type.

• Selectors: functions that retrieve information from the data type.

For example, say we have an abstract data type called city. This city object will hold
the city’s name, and its latitude and longitude. To create a city object, you’d use a
constructor like
city = make_city(name, lat, lon)

To extract the information of a city object, you would use the selectors like
get_name(city)
get_lat(city)
get_lon(city)

For example, here is how we would use the make city constructor to create a city object
to represent Berkeley and the selectors to access its information.

DISCUSSION 5: ABSTRACT DATA TYPES Page 2
>>> berkeley = make_city('Berkeley', 122, 37)
>>> get_name(berkeley)
'Berkeley'
>>> get_lat(berkeley)
122
>>> get_lon(berkeley)
37

The following code will compute the distance between two city objects:
from math import sqrt
def distance(city_1, city_2):

lat_1, lon_1 = get_lat(city_1), get_lon(city_1)
lat_2, lon_2 = get_lat(city_2), get_lon(city_2)

return sqrt((lat_1 - lat_2)**2 + (lon_1 - lon_2)**2)

Notice that we don’t need to know how these functions were implemented. We are as-
suming that someone else has defined them for us.

It’s okay if the end user doesn’t know how functions were implemented. However, the
functions still have to be defined by someone. We’ll look into defining the constructors
and selectors later in this discussion.

1.2 Abstraction Violations

Notice how we did not need to know how the constructors and selectors in the previous
section were implemented in order to use them. This is what we mean by the implemen-
tation and use of an abstract data type being separate. In fact, you should never assume
anything about how the constructors and selectors for an abstract data type are imple-
mented. Doing so is called a data abstraction violation.

As an example, here is one implementation for the rational constructor.
def rational(n, d):

return [n, d]

Given this constructor, the following would be considered a data abstraction violation:
>>> frac1 = rational(3, 4)
>>> frac2 = rational(5, 6)
>>> frac1[0] * frac2[0]
15

This is because we assumed rationals were represented as lists instead of accessing their
elements using the selectors.

Data C88C Fall 2023

DISCUSSION 5: ABSTRACT DATA TYPES Page 3
1.3 Questions

1. The CS 88 TAs have decided to call upon the power of data abstraction to organize
their discussion sections. To do so, they’ve created a discussion abstract data type.
A discussion contains three things:

• The name of the TA running the section

• The time the section starts, given as an integer

• A list of students enrolled in the section

Given this, the TAs come up with the following constructor and selectors:

• make discussion(ta, time, students): Creates and returns a new dis-
cussion section.

• get ta(disc): Returns the TA running the given discussion section.

• get time(disc): Returns the start time of the given discussion section.

• get students(disc): Returns the list of students enrolled in the given discus-
sion section.

The TAs have decided to reveal the implementation of the discussion section ADT.
Use these function definitions to answer the next two questions:
def make_discussion(ta, time, students):

return [name, time, students]

def get_ta(disc):
return disc[0]

def get_time(disc):
return disc[1]

def get_students(disc):
return disc[2]

Data C88C Fall 2023

DISCUSSION 5: ABSTRACT DATA TYPES Page 4
2. Implement add student, which takes in a discussion section and a string represent-

ing a student’s name, and returns a new discussion with the new student added to
the roster. The list of students for the new discussion should be a new list. Remember
to use the constructor and selectors!
def add_student(disc, student):

""" Adds a student to this discussion.
>>> disc = make_discussion("Alex", 4, ["Srinath", "Brian

"])
>>> new_disc = add_student(disc, "Sophia")
>>> get_students(new_disc)
["Srinath", "Brian", "Sophia"]
>>> get_students(disc)
["Srinath", "Brian"]
"""

Data C88C Fall 2023

DISCUSSION 5: ABSTRACT DATA TYPES Page 5
3. The TAs have written the following code using the above data abstraction. However,

it contains some abstraction violations. Underline each occurence of an abstraction
violation. Then, if possible, write the correct line of code to the right.
def check_start(disc1, disc2):

"""Checks whether disc1 and disc2 have the same starting
time."""

return disc1[1] == disc2[1]:

def print_students(disc):
"""Prints the name of each student in the discussion."""
for student in disc[2]:

print(student)

def print_duplicates(disc1, disc2):
"""Prints each student that attended both disc1 and disc2

."""
students_1, students_2 = get_students(disc1), get_students

(disc2)
for i in range(len(students_1)):

if students_1[i] in students_2:
print(students_1[i])

Data C88C Fall 2023

DISCUSSION 5: ABSTRACT DATA TYPES Page 6
4. A disgruntled student makes changes to the discussion data abstraction in an attempt

to disrupt the TAs’ ability to run section. The new implementation is as follows:
def make_discussion(ta, time, students):

return {"ta" : ta, "time" : time, "students" : students}

def get_ta(disc):
return disc["ta"]

def get_time(disc):
return disc["time"]

def get_students(disc):
return disc["students"]

Would the code in the previous question, with the corrections you made, still work
with these changes? Would the code before removing abstraction violations still
work?

Data C88C Fall 2023

DISCUSSION 5: ABSTRACT DATA TYPES Page 7
5. The Hadley Cycle describes the process of atmospheric circulation caused by rising

air at the equator and falling air at about 30 degrees North or South. The air loses
water vapor to rain as it rises from the equator. Consequently, the falling cold air is
dry, so that many regions around 30 degrees from the equator comprise of desert.

Write a function near thirty(city, diff) that checks whether an input city is
within diff degrees of 30 degrees N or 30 degrees S.

As a reminder, the city abstract data type holds the city’s name, and its latitude
and longitude. To create a city object, you’d use a constructor like
city = make_city(name, lat, lon)

To extract the information of a city object, you would use the selectors like
get_name(city)
get_lat(city)
get_lon(city)

You should use constructors and selectors defined above for city in your solution.
def near_thirty(city, diff):

Data C88C Fall 2023

