
INHERITANCE AND LINKED LISTS 8
DATA C88C

October 26, 2023

1 Inheritance

1.1 Introduction

Python classes can implement a useful abstraction technique known as inheritance. To
illustrate this concept, consider the following Dog and Cat classes.
class Dog():

def __init__(self, name, owner):
self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat():
def __init__(self, name, owner, lives=9):

self.is_alive = True
self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 2
Notice that because dogs and cats share a lot of similar qualities, there is a lot of repeated
code! To avoid redefining attributes and methods for similar classes, we can write a single
superclass from which the similar classes inherit. For example, we can write a class called
Pet and redefine Dog as a subclass of Pet:
class Pet():

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where one
class is a more specific version of the other, e.g. a dog is a pet. Because Dog inherits from
Pet, we didn’t have to redefine init or eat. However, since we want Dog to talk
in a way that is unique to dogs, we did override the talk method.

Data C88C Fall 2023

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 3
1.2 Questions

1. Assume these commands are entered in order. What would Python output?
class Foo:

def __init__(self, a):
self.a = a

def garply(self):
return self.baz(self.a)

class Bar(Foo):
a = 1
def baz(self, val):

return val

>>> f = Foo(4)
>>> b = Bar(3)
>>> f.a

>>> b.a

>>> f.garply()

>>> b.garply()

>>> b.a = 9
>>> b.garply()

>>> f.baz = lambda val: val * val
>>> f.garply()

Data C88C Fall 2023

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 4
2. Below is a skeleton for the Cat class, which inherits from the Pet class. To com-

plete the implementation, override the init and talk methods and add a new
lose_life method.

Hint: You can call the init method of Pet to set a cat’s name and owner.
class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):
""" Print out a cat's greeting.
>>> Cat('Thomas', 'Tammy').talk()
Thomas says meow!
"""

def lose_life(self):
"""Decrements a cat's life by 1. When lives reaches
zero, 'is_alive' becomes False.
"""

3. More cats! Fill in this implemention of a class called NoisyCat, which is just like a
normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat!
class _____________________: # Fill me in!

"""A Cat that repeats things twice."""
def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):
"""Talks twice as much as a regular cat.
>>> NoisyCat('Magic', 'James').talk()
Magic says meow!
Magic says meow!
"""

Data C88C Fall 2023

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 5

2 Linked Lists

2.1 Introduction

The following is the Link class used to represent linked lists.

class Link:
empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __getitem__(self, i):
if i == 0:

return self.first
return self.rest[i-1]

def __len__(self):
return 1 + len(self.rest)

We can write lnk.first and lnk.rest to access the first element of the linked list and
the rest of the linked list, respectively. In addition to the constructor init , we have
the special Python methods getitem and len . Note that any method that begins
and ends with two underscores is a special Python method. Special Python methods may
be invoked using built-in functions and special notation. The built-in Python element
selection operator, as in lst[i], invokes lst. getitem (i). Likewise, the built-in
Python function len, as in len(lst), invokes lst. len ().

However, we won’t use the above special methods in the rest of this worksheet, nor in
most of our linked list problems in this class. Instead, we will only use the Link construc-
tor and the self.first and self.rest instance attributes. This will be an exercise in
using the recursive structure of linked lists rather than treating them like regular Python
lists.

For the rest of this worksheet, assume that you are only given this portion of the Link
class implementation:

class Link:
empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

Data C88C Fall 2023

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 6
2.2 Questions

1. Write a function that takes in a a linked list and returns the sum of all its elements.
You may assume all elements in lnk are integers.
def sum_nums(lnk):

"""
>>> a = Link(1, Link(6, Link(7)))
>>> sum_nums(a)
14
"""

Data C88C Fall 2023

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 7
2. Write a iterative function is palindrome that takes a LinkedList, lnk, and returns
True if lnk is a palindrome and False otherwise. You can assume you have access
to a reverse function that takes a linked list as input and returns a reversed version
of the original linked list.
def is_palindrome(lnk):

"""
>>> one_link = Link(1)
>>> is_palindrome(one_link)
True
>>> lnk = Link(1, Link(2, Link(3, Link(2, Link(1)))))
>>> is_palindrome(lnk)
True
>>> is_palindrome(Link(1, Link(2, Link(3, Link(1)))))
False
"""

Data C88C Fall 2023

DISCUSSION 8: INHERITANCE AND LINKED LISTS Page 8
3. Write a function that takes a sorted linked list of integers and mutates it so that all

duplicates are removed.
def remove_duplicates(lnk):

"""
>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))
>>> remove_duplicates(lnk)
>>> lnk
Link(1, Link(5))
"""

Data C88C Fall 2023

