
Data C88C Midterm Study Guide — Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to
the value bound to
that name in the
earliest frame of the
current environment
in which that name is
found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4

operator: square
function: func square(x)

Intrinsic name

4

16Argument

Return value

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then return
to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements: hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single
argument (not called term)

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter names
in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name, formal
parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to
argument

Return value is
not a binding!

Built-in function

User-defined
function

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a
non-nested function (no
def within def)
consists of one local
frame, followed by the
global frame

2

1

1

2

1

B
A B

A

A call expression and the body
of the function being called
are evaluated in different
environments

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # Zeroth and first Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

A and B:
True if A is True and B is True

A or B:
True if A is True or B is True

not A:
True if A is False
False if A is True

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

Data C88C Midterm Study Guide — Page 2

A function that returns a function

A local
def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

square = lambda x,y: x * y

that returns the value of "x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the environment in which they
were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

•Every user-defined function has
a parent frame (often global)

•The parent of a function is the
frame in which it was defined

•Every local frame has a parent
frame (often global)

•The parent of a frame is the
parent of the function called

Evaluates to a function.
No "return" keyword!

When a function is defined:
1. Create a function value: func <name>(<formal parameters>)
2. Its parent is the current frame.

3. Bind <name> to the function value in the current frame
(which is the first frame of the current environment).

When a function is called:
1. Add a local frame, titled with the <name> of the function being called.
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the <formal parameters> to the arguments in the local frame.
4. Execute the body of the function in the environment that starts with the

local frame.

2

1

3

Nested
def

A function’s signature
has all the information
to create a local frame

Return value of make_adder is an
argument to compose1

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.

 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

Two return values,
separated by commas

Multiple assignment
to two names

>>> min(2, 1, 4, 3)
1
>>> max(2, 1, 4, 3)
4
>>> abs(-2)
2
>>> pow(2, 3)
8
>>> len('word')
4
>>> round(1.75)
2
>>> print(1, 2)
1 2
>>> float(5)
5.0

>>> 2 + 3
5
>>> 2 * 3
6
>>> 2 ** 3
8
>>> 5 / 3
1.6666666666666667
>>> 5 // 3
1
>>> 5 % 3
2
>>> str(5)
'5'
>>> int('5')
5

def search(f):
 """Return the smallest non-negative
 integer x for which f(x) is a true value.
 """
 x = 0
 while True:
 if f(x):
 return x
 x += 1

def is_three(x):
 """Return whether x is three.

 >>> search(is_three)
 3
 """
 return x == 3

def inverse(f):
 """Return a function g(y) that returns
 x such that f(x) == y.

 >>> sqrt = inverse(lambda x: x * x)
 >>> sqrt(16)
 4
 """
 return lambda y: search(lambda x: f(x)==y)

False values so far: 0, False, '', None

Anything value that's not false is true.

>>> if 0:
... print('*')
>>> if 1:
... print('*')
*
>>> if abs:
... print('*')
*

>>> if 1 and 0:
... print('*')
>>> if 1 or 0:
... print('*')
*
>>> if 1 or 1/0:
... print('*')
*

from math import sqrt

def isPrime(n):
 i = 2
 while i <= int(sqrt(n)):
 if n % i == 0:
 return False
 i = i + 1
 return True

Data C88C Midterm Study Guide — Page 3

>>> digits = [1, 8, 2, 8]
>>> len(digits)
4
>>> digits[3]
8
>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

>>> pairs=[[1, 2], [2, 2], [3, 2], [4, 4]]
>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1
>>> same_count
2

A sequence of
fixed-length sequences

A name for each element in a
fixed-length sequence

for <name> in <expression>:
 <suite>
1. Evaluate the header <expression>,

which must yield an iterable value
(a list, tuple, iterator, etc.)

2. For each element in that sequence,
in order:
A. Bind <name> to that element in

the current frame
B. Execute the <suite>

Executing a for statement:

Lists:

Unpacking in a
for statement:

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

..., -3, -2, -1, 0, 1, 2, 3, 4, ...

range(-2, 2)
Length: ending value - starting value
Element selection: starting value + index

List constructor

Range with a 0
starting value

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this
evaluation procedure:
1. Add a new frame with the current frame as its parent
2. Create an empty result list that is the value of the

expression
3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1
B. If <filter exp> evaluates to a true value, then add

the value of <map exp> to the result list

List comprehensions:

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Membership: Slicing:

Slicing creates a new object

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a == b
True
>>> a
[10, 20]
>>> b
[10, 20]

>>> suits = ['coin', 'string', 'myriad']
>>> suits.pop()
'myriad'
>>> suits.remove(‘string')

>>> suits.append('cup')
>>> suits.extend(['sword', 'club'])
>>> suits[2] = 'spade'
>>> suits
['coin', 'cup', 'spade', 'club']
>>> suits[0:2] = ['diamond']
>>> suits
['diamond', 'spade', 'club']
>>> suits.insert(0, 'heart')
>>> suits
['heart', 'diamond', 'spade', 'club']

List mutation:

Identity:
<exp0> is <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to the same object
Equality:
<exp0> == <exp1>
evaluates to True if both <exp0> and
<exp1> evaluate to equal values
Identical objects are always equal values

digits

pairs

Remove and return
the last element

Removes first
matching value

Add all
values

Replace a
slice with
values

Add an element
at an index

>>> all([False, True])
False
>>> all([])
True
>>> sum([1, 2])
3
>>> sum([1, 2], 3)
6
>>> sum([])
0
>>> sum([[1], [2]], [])
[1, 2]

def virfib(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return virfib(n-2) + virfib(n-1)

0, 1, 2, 3, 4, 5, 6, 7, 8,n:
0, 1, 1, 2, 3, 5, 8, 13, 21,virfib(n):

def cascade(n):
 if n < 10:
 print(n)
 else:
 print(n)
 cascade(n//10)
 print(n)

>>> cascade(123)
123
12
1
12
123

>>> any([False, True])
True
>>> any([])
False
>>> max(1, 2)
2
>>> max([1, 2])
2
>>> max([1, -2], key=abs)
-2

words = {
	 "más": "more",
	 "otro": "other",
	 "agua": "water"
}

Dictionaries:

>>> len(words)
3
>>> "agua" in words
True
>>> words["otro"]
'other'
>>> words["pavo"]
KeyError
>>> words.get("pavo", "🤔")
'🤔'

>>> [word for word in words]
['más', 'otro', 'agua']
>>> [words[word] for word in words]
['more', 'other', 'water']
>>> words["oruguita"] = 'caterpillar'
>>> words["oruguita"]
'caterpillar'
>>> words["oruguita"] += '🐛'
>>> words["oruguita"]
'caterpillar🐛'

{key: value for <name> in <iter exp>}

>>> {x: x*x for x in range(3,6)}
{3: 9, 4: 16, 5: 25}

Dictionary comprehensions:

You can copy a list by calling the list
constructor or slicing the list from the
beginning to the end.

List methods:

>>> a = [10, 20, 30]
>>> list(a)
[10, 20, 30]
>>> a[:]
[10, 20, 30]

Tuples:
>>> empty = ()
>>> len(empty)
0
>>> conditions = ('rain', 'shine')
>>> conditions[0]
'rain'
>>> conditions[0] = 'fog'
Error

withdraw
doesn't

reassign any
name within
the parent

It changes the contents
of the b list

Name bound
outside of

withdraw def

Element
assignment

changes a list

>>> bool(0)
False
>>> bool(1)
True
>>> bool('')
False
>>> bool('0')
True
>>> bool([])
False
>>> bool([[]])
True
>>> bool({})
False
>>> bool(())
False
>>> bool(lambda x: 0)
True

False values:
•Zero
•False
•None
•An empty string,
list, dict, tuple

All other values
are true values.

When a class is called:
1.A new instance of that class is created:
2.The __init__ method of the class is called with the new object as its first

argument (named self), along with any additional arguments provided in the
call expression.

An account instance

Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

balance: 0 holder: 'Jim'

__init__ is called a
constructor

self should always be
bound to an instance of
the Account class or a
subclass of Account

A new instance is
created by calling a

class

<expression> . <name>
The <expression> can be any valid Python expression.
The <name> must be a simple name.
Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>.

Dot expression

Call expression

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
10
>>> a.deposit(2)
12

Function call: all
arguments within

parentheses

Method invocation:
One object before
the dot and other
arguments within

parentheses

Assignment statements with a dot expression on their left-hand side affect
attributes for the object of that dot expression
• If the object is an instance, then assignment sets an instance attribute
• If the object is a class, then assignment sets a class attribute

To evaluate a dot expression:
1. Evaluate the <expression> to the left of the dot, which yields

the object of the dot expression
2. <name> is matched against the instance attributes of that object;

if an attribute with that name exists, its value is returned
3. If not, <name> is looked up in the class, which yields a class

attribute value
4. That value is returned unless it is a function, in which case a

bound method is returned instead

or
 return super().withdraw(amount + self.withdraw_fee)

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

Data C88C Midterm Study Guide — Page 4

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

Instance
attributes of
jim_account

Instance
attributes of
tom_account

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.
2. Otherwise, look up the name in the base class, if there is one.
>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Python object system:

 class Link:
 empty = ()

Some zero
length sequence

 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def __repr__(self):
 if self.rest:
 rest = ', ' + repr(self.rest)
 else:
 rest = ''
 return 'Link('+repr(self.first)+rest+')'

 def __str__(self):
 string = '<'
 while self.rest is not Link.empty:
 string += str(self.first) + ' '
 self = self.rest
 return string + str(self.first) + '>'

first: 4

rest:

Link instance

first: 5

rest:

Link instance

>>> s = Link(4, Link(5))
>>> s
Link(4, Link(5))
>>> s.first
4
>>> s.rest
Link(5)
>>> print(s)
<4 5>
>>> print(s.rest)
<5>
>>> s.rest.rest is Link.empty
True

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

• Recursive decomposition: finding
simpler instances of a problem.
• E.g., count_partitions(6, 4)
• Explore two possibilities:
• Use at least one 4
• Don't use any 4
• Solve two simpler problems:
• count_partitions(2, 4)
• count_partitions(6, 3)
• Tree recursion often involves
exploring different choices.

def sum_digits(n):
 "Sum the digits of positive integer n."
 if n < 10:
 return n
 else:
 all_but_last, last = n // 10, n % 10
 return sum_digits(all_but_last) + last

• The def statement header is like any function
• Conditional statements check for base cases
• Base cases are evaluated without recursive calls
• Recursive cases are evaluated with recursive calls

Anatomy of a recursive function:

