
Functions

Announcements

Assignment Statements

Assignment Statements

The expression (right) is evaluated, and its value is assigned to the name (left).

>>> x = 2
>>> y = x + 1
>>> y
3
>>> x = 5
>>> y
3

4

x = 1 + 2

x - 1 = 2
1 + 2 = x

assigns the value of the expression on the rightAn assignment statement

to the name on the left

(Demo)

Environment Diagrams

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Local frame

Original name of
function called

Formal parameter
bound to argument Return value

(not a binding!)

Built-in function

User-defined
function

6
http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Calling User-Defined Functions

A function’s signature has all the
information needed to create a local frame

7

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment
2. Bind the function's formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Looking Up Names In Environments

Every expression is evaluated in the context of an environment.

So far, the current environment is either:

• The global frame alone, or

• A local frame, followed by the global frame.

Most important two things I’ll say all day:

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the
current environment in which that name is found.

E.g., to look up some name in the body of the square function:

• Look for that name in the local frame.

• If not found, look for it in the global frame.
(Built-in names like “max” are in the global frame too,
 but we don’t draw them in environment diagrams.)

8

A Sequence of Frames

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the
current environment in which that name is found.

9

...

f2

...

f1

...

Global Frame

ea
rl

ie
r

la
te

r

The global frame is
always the last
place you look

Even though all three frames are in the same diagram,
they might not be in the same environment

A sequence is a first frame and
then the rest of the sequence

(Demo)

Multiple Assignment

Multiple Assignment

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.

11

Just executed

Just executed

Next to execute

http://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Ab%20%3D%202%0Ab,%20a%20%3D%20a%20%2B%20b,%20b&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

(Demo)

Print and None

(Demo)

Small Expressions

Problem Definition

Imagine you can call only the following three functions:

- f(x): Subtracts one from an integer x

- g(x): Doubles an integer x

- h(x, y): Concatenates the digits of two different
positive integers x and y. For example, h(789, 12)
evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that
contains only f, g, h, the number 5, and parentheses. All
of these can be repeated. For example, h(g(5), f(f(5))) is
a small expression that evaluates to 103.

What's the shortest small expression you can find that
evaluates to 2024?

14

From Discussion 0: A Simple Restatement:

You start with 5. You can:

- Subtract 1 from a number

- Double a number

- Glue two numbers together

How do you get to 2024?

5➡10➡20
5➡4➡3➡2

5➡4

Fewest calls?
Shortest length when written?

Effective problem solving:
• Understand the problem
• Come up with ideas
• Turn those ideas into solutions

Search

15

A common strategy: try a bunch of options to see which is best

Computer programs can evaluate many alternatives by repeating simple operations

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

16

f(f(f(5))) -> 2
g(f(f(5))) -> 6
f(g(f(5))) -> 7
g(g(f(5))) -> 16
f(f(g(5))) -> 8
g(f(g(5))) -> 18
f(g(g(5))) -> 19
g(g(g(5))) -> 40

h(5,f(f(5))) -> 53
h(5,g(f(5))) -> 58
h(5,f(g(5))) -> 59
h(5,g(g(5))) -> 520
h(5,f(h(5,5))) -> 554
h(5,g(h(5,5))) -> 5110
h(5,h(5,f(5))) -> 554
h(5,h(5,g(5))) -> 5510
h(5,h(5,h(5,5))) -> 5555
h(5,h(f(5),5)) -> 545
h(5,h(g(5),5)) -> 5105
h(5,h(h(5,5),5)) -> 5555
h(f(5),f(5)) -> 44
h(f(5),g(5)) -> 410
h(f(5),h(5,5)) -> 455

f(f(h(5,5))) -> 53
g(f(h(5,5))) -> 108
f(g(h(5,5))) -> 109
g(g(h(5,5))) -> 220
f(h(5,f(5))) -> 53
g(h(5,f(5))) -> 108
f(h(5,g(5))) -> 509
g(h(5,g(5))) -> 1020
f(h(5,h(5,5))) -> 554
g(h(5,h(5,5))) -> 1110
f(h(f(5),5)) -> 44
g(h(f(5),5)) -> 90
f(h(g(5),5)) -> 104
g(h(g(5),5)) -> 210
f(h(h(5,5),5)) -> 554
g(h(h(5,5),5)) -> 1110

Reminder: f(x) subtracts 1; g(x) doubles; h(x, y) concatenates

h(g(5),f(5)) -> 104
h(g(5),g(5)) -> 1010
h(g(5),h(5,5)) -> 1055
h(h(5,5),f(5)) -> 554
h(h(5,5),g(5)) -> 5510
h(h(5,5),h(5,5)) -> 5555
h(f(f(5)),5) -> 35
h(g(f(5)),5) -> 85
h(f(g(5)),5) -> 95
h(g(g(5)),5) -> 205
h(f(h(5,5)),5) -> 545
h(g(h(5,5)),5) -> 1105
h(h(5,f(5)),5) -> 545
h(h(5,g(5)),5) -> 5105
h(h(5,h(5,5)),5) -> 5555
h(h(f(5),5),5) -> 455
h(h(g(5),5),5) -> 1055
h(h(h(5,5),5),5) -> 5555

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

17

g(g(f(f(f(f(h(5,g(5)))))))) -> 2024 has 8 calls and 27 characters.
g(h(g(5),g(f(f(g(f(5))))))) -> 2024 has 8 calls and 27 characters.
f(h(g(g(5)),h(f(f(f(5))),5))) -> 2024 has 8 calls and 29 characters.
f(h(f(f(f(h(g(g(5)),5)))),5)) -> 2024 has 8 calls and 29 characters.
f(h(f(f(h(g(g(5)),f(5)))),5)) -> 2024 has 8 calls and 29 characters.
f(h(f(h(g(g(5)),f(f(5)))),5)) -> 2024 has 8 calls and 29 characters.
f(h(h(g(g(5)),f(f(f(5)))),5)) -> 2024 has 8 calls and 29 characters.
h(g(g(5)),g(g(g(f(f(5)))))) -> 2024 has 8 calls and 27 characters.
h(g(g(5)),f(h(f(f(f(5))),5))) -> 2024 has 8 calls and 29 characters.
h(g(g(5)),h(f(f(f(5))),f(5))) -> 2024 has 8 calls and 29 characters.
h(f(f(f(h(g(g(5)),5)))),f(5)) -> 2024 has 8 calls and 29 characters.
h(f(f(h(g(g(5)),f(5)))),f(5)) -> 2024 has 8 calls and 29 characters.
h(f(h(g(g(5)),f(f(5)))),f(5)) -> 2024 has 8 calls and 29 characters.
h(h(g(g(5)),f(f(f(5)))),f(5)) -> 2024 has 8 calls and 29 characters.

g(h(g(5),g(g(f(f(5)))))) -> 2024 has 7 calls and 24 characters.

Reminder: f(x) subtracts 1; g(x) doubles; h(x, y) concatenates

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

18

def smalls(n):
 if n == 0:
 return [Number(5)]
 else:
 results = []
 for operand in smalls(n-1):
 results.append(Call(f, [operand]))
 results.append(Call(g, [operand]))
 for k in range(n):
 for first in smalls(k):
 for second in smalls(n-k-1):
 if first.value > 0 and second.value > 0:
 results.append(Call(h, [first, second]))
 return results

def print_smallest():
 result = []
 for i in range(9):
 result.extend([e for e in smalls(i) if e.value == 2024])

def f(x):
 return x - 1
def g(x):
 return 2 * x
def h(x, y):
 return int(str(x) + str(y))

class Number:
 def __init__(self, value):
 self.value = value

 def calls(self):
 return 0

 def __str__(self):
 return str(self.value)

class Call:
 """A call expression."""
 def __init__(self, f, operands):
 self.f = f
 self.operands = operands
 self.value = f(*[e.value for e in operands])

 def calls(self):
 return 1 + sum(o.calls() for o in self.operands)

 def __str__(self):
 return f'{self.f.__name__}({",".join([str(o) for o in self.operands])})'

2: Functions

10: Containers

12: Objects

9: Sequences

11: Mutability
7: Recursion

8: Tree
Recursion

3: Control

By the Midterm, you can do this.

13: Attributes

