
Control

Announcements

Print and None

abs

Pure Functions & Non-Pure Functions

-2
2

-2
None

print

Python displays the output “-2”

2, 100
1267650600228229401496703205376

pow

Pure Functions
just return values

Non-Pure Functions
have side effects

Argument

Return value

A side effect isn't a
value; it's anything
that happens as a
consequence of

calling a function

Returns None!

4

2 Arguments

A return value is
the value of a call
expression and can

be used as part of a
larger expression

Example: Print Then Return

Implement a function h(x) that first prints, then returns, the value of f(x).

5

def h(x):
 y = f(x)
 print(y)
 return y

def h(x):
 print(f(x))
 return f(x)

def h(x):
 return print(f(x))

(A) (B) (C)

What's a function f for which implementations (B) and (C) would have different behavior?

>>> h(2)
...

>>> h(2)
...

(Demo)

Multiple Environments

Life Cycle of a User-Defined Function

Def statement:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

Def
statement

Formal parameter

 Body

Return
expression

(return statement)

A new function is created!

Name bound to that function
in the current frame

 operand: 2+2
 argument: 4

Operator & operands evaluated

Function (value of operator)
called on arguments
(values of operands)

What happens?

 operator: square
 function: func square(x)

Signature

4

16

A new frame is created!

Parameters bound to arguments

Body is executed in that new
environment

Argument

Return value

Name

7https://pythontutor.com/cp/composingprograms.html#code=def%20f%28x%29%3A%0A%20%20%20%20return%20square%28x%20%2B%20square%28y%20%2B%201%29%29%0A%20%20%20%20%0Adef%20square%28z%29%3A%0A%20%20%20%20y%20%3D%20z%20*%20z%0A%20%20%20%20return%20y%0A%20%20%20%20%0Ax,%20y,
%20z%20%3D%201,%202,%203%0Aprint%28f%28z%29%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Control

What is Control?

Thus far, when we call a user-defined function, we execute the body of the function top
down until we’ve reached the end of a function or we’ve hit a return statement. However,
many of the programs we write will not necessarily run in this order.

What are some examples of certain functions we may write that may stop early or run out of
order?

9

Conditional Statements

Conditional statements (often called "If" Statements) contain statements that may or may
not be evaluated.

10

if x > 2:
 print('big')
if x > 0:
 print('positive')

if x > 2:
 print('big')
elif x > 0:
 print(‘less big’)

if x > 2:
 print('big')
elif x > 0:
 print(‘less big')
else:
 print(‘not pos')

Two separate (unrelated)
conditional statements

One statement with two
clauses: if and elif
Only one body can ever
be executed

One statement with three
clauses: if, elif, else
Only one body can ever
be executed

x=10 x=1 x=-1

big
positive

big

big

positive

less big

less big not pos

While Statements

While statements contain statements that are repeated as long as some condition is true.

Important considerations:

• How many separate names are needed and what do they mean?

• The while condition must eventually become a false value for the statement to end
(unless there is a return statement inside the while body).

• Once the while condition is evaluated, the entire body is executed.

11

Names and their initial values
The while condition is evaluated

before each iteration

A name that appears in the while
condition is changing Executed even when is set to 3

Example: Prime Factorization

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

...
8 = 2 * 2 * 2
9 = 3 * 3
10 = 2 * 5
11 = 11
12 = 2 * 2 * 3
...

How can we determine whether a number is divisible by another?

One approach: Find the smallest prime factor of n, then divide by it

13

858 = 2 * 429 = 2 * 3 * 143 = 2 * 3 * 11 * 13

(Demo)

