
Higher-Order Functions



Announcements



Office Hours: You Should Go!
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You are not alone!

https://cs61a.org/office-hours/

https://cs61a.org/office-hours/


Designing Functions



Describing Functions

A function's domain is the set of all inputs it might 
possibly take as arguments. 

A function's range is the set of output values it might 
possibly return. 

A pure function's behavior is the relationship it 
creates between input and output.
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def square(x): 
    """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the 
square of x



A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations
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Don’t repeat yourself (DRY):  Implement a process just once, but execute it many times

>>> round(1.23, 1) 
1.2

>>> round(1.23, 0) 
1

>>> round(1.23, 5) 
1.23

>>> round(1.23) 
1

(Demo)



Higher-Order Functions



Summation Example
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    return total

def identity(k):
    return k

def cube(k):
    return pow(k, 3)

def summation(n, term):
    """Sum the first n terms of a sequence.
    
    >>> summation(5, cube)
    225
    """
    total, k = 0, 1
    while k <= n:
        total, k = total + term(k), k + 1
    return total

def pi_term(k):
    return 8 / (k * 4 � 3) / (k * 4 � 1)

# Local function definitions; returning functions

def make_adder(n):
    """Return a function that takes one argument k and returns k + n.

    >>> add_three = make_adder(3)
    >>> add_three(4)
    7
    """
    def adder(k):
        return k + n
    return adder

def compose1(f, g):
    """Return a function that composes f and g.

    f, g �� functions of a single argument
    """
    def h(x):
        return f(g(x))
    return h

@main
def run():
    interact()

Function of a single argument 
(not called "term")

A formal parameter that will 
be bound to a function

The function bound to term 
gets called here

The cube function is passed 
as an argument value

0 + 1 + 8 + 27 + 64 + 125
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Program Design

Modularity 

Abstraction 

Separation of Concerns
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Twenty-One Rules

Two players alternate turns, on which they can add 1, 2, or 3 to the current total 

The total starts at 0 

The game end whenever the total is 21 or more 

The last player to add to the total loses
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21 20

19

18
17

(Demo)

...

(Demo)

Some states are good; some are bad



Functions as Return Values

(Demo)
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Locally Defined Functions

A function that 
returns a function

A def statement within 
another def statement

The name add_three is bound 
to a function

Can refer to names in the 
enclosing function 

Functions defined within other function bodies are bound to names in a local frame
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