
Higher-Order Functions

Announcements

Office Hours: You Should Go!

3

You are not alone!

https://cs61a.org/office-hours/

https://cs61a.org/office-hours/

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

5

def square(x):
 """Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

6

Don’t repeat yourself (DRY): Implement a process just once, but execute it many times

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

(Demo)

Higher-Order Functions

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

8

Program Design

Modularity

Abstraction

Separation of Concerns

9

Twenty-One Rules

Two players alternate turns, on which they can add 1, 2, or 3 to the current total

The total starts at 0

The game end whenever the total is 21 or more

The last player to add to the total loses

10

21 20

19

18
17

(Demo)

...

(Demo)

Some states are good; some are bad

Functions as Return Values

(Demo)

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

12

