
Trees

Announcements

A quick aside…

On Exam Scores

My instructor OH this week will be extended and will focus on exam
support sessions - other staffers will be helping out. We can get a
sense of your studying style and give advice headed into the final!
Keep an eye out on EdStem.

Partly because the format of the exam did not match past exams, but
now you know what to expect for the final ;)

* A low midterm score does not need to define who you are. It is OK
to feel behind, disheartened, exhausted. Take care of yourself and
your wellbeing, then turn your attention back to C88C.

* We are here to support you! OH, EdStem, exam prep tutoring

*

4

You got
this!

^— a few of my exam scores as an undergrad

Data Abstraction

Data Abstraction

A small set of functions enforce an abstraction barrier between
representation and use

• How data are represented (as some underlying list, dictionary, etc.)

• How data are manipulated (as whole values with named parts)

6

E.g., use Link.empty instead of ()

Why? Code becomes easier to read & revise; later you could represent Link.empty as
None or [] or “”

Trees

Tree Abstraction

8

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node

Using the Tree Abstraction

For a tree t, you can only:

•Get the label for the root of the tree: t.label

•Get the list of branches for the tree: t.branches

•Get the branch at index i, which is a tree: t.branches[i]

•Determine whether the tree is a leaf: t.is_leaf()

•Treat t as a value: return t, f(t), [t], s = t, etc.

9

(Demo)

Tree Processing

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

11

def count_leaves(t):

 """Count the leaves of a tree."""

 if t.is_leaf():

 return 1

 else:

 branch_counts = [count_leaves(b) for b in t.branches]

 return sum(branch_counts)

Writing Recursive Functions

Make sure you can answer the following before you start writing code:

• What recursive calls will you make?

• What type of values do they return?

• What do the possible return values mean?

• How can you use those return values to complete your implementation?

12

Practice: Print_Sums

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

13

def print_sums(t):

 “""Print the sum of labels along the path from the root to each leaf.

 >>> print_sums(tree(3, [tree(4), tree(5, [tree(6)])]))

 7

 14

””"

Practice: print_sums_helper

14

def print_sums_helper(t, path_sum):

 “""Print the sum of labels along the path from the root to each leaf.

 >>> print_sums_helper(tree(3, [tree(4), tree(5, [tree(6)])]), 0)

 7

 14

””"

 path_sum = _____________

 if ____________________:

 print(path_sum)

 else:

 for branch in t.branches:

Practice: print_sums_helper

15

def print_sums_helper(t, path_sum):

 “""Print the sum of labels along the path from the root to each leaf.

 >>> print_sums_helper(tree(3, [tree(4), tree(5, [tree(6)])]), 0)

 7

 14

””"

 path_sum = path_sum + t.label

 if t.is_leaf():

 print(path_sum)

 else:

 for branch in t.branches:

 print_sums_helper(branch, path_sum)

Practice: Linked Lists

Inserting into a Linked List

17

def insert_link(s, x, i):
 """Insert x into linked list s at index i.

 >>> evens = Link(4, Link(2, Link(6)))
 >>> insert_link(evens, 8, 1)
 >>> insert_link(evens, 10, 4)
 Index out of range
 >>> insert_link(evens, 12, 0)
 >>> insert_link(evens, 14, 10)
 Index out of range
 >>> print(evens)
 <12 4 8 2 6>
 """
 if s is Link.empty:
 print('Index out of range')
 elif i == 0:
 second = ______________________
 s.first = _______________
 s.rest = second
 else:
 insert_link(s.rest, x, i-1)

4 2 6

evens

24

x812 x

Inserting into a Linked List

18

def insert_link(s, x, i):
 """Insert x into linked list s at index i.

 >>> evens = Link(4, Link(2, Link(6)))
 >>> insert_link(evens, 8, 1)
 >>> insert_link(evens, 10, 4)
 Index out of range
 >>> insert_link(evens, 12, 0)
 >>> insert_link(evens, 14, 10)
 Index out of range
 >>> print(evens)
 <12 4 8 2 6>
 """
 if s is Link.empty:
 print('Index out of range')
 elif i == 0:
 second = Link(s.first, s.rest)
 s.first = x
 s.rest = second
 else:
 insert_link(s.rest, x, i-1)

4 2 6

evens

24

x812 x

